ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funmo GIF version

Theorem funmo 5211
Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998.)
Assertion
Ref Expression
funmo (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem funmo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dffun6 5210 . . . . . 6 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
21simplbi 272 . . . . 5 (Fun 𝐹 → Rel 𝐹)
3 brrelex 4649 . . . . . 6 ((Rel 𝐹𝐴𝐹𝑦) → 𝐴 ∈ V)
43ex 114 . . . . 5 (Rel 𝐹 → (𝐴𝐹𝑦𝐴 ∈ V))
52, 4syl 14 . . . 4 (Fun 𝐹 → (𝐴𝐹𝑦𝐴 ∈ V))
65ancrd 324 . . 3 (Fun 𝐹 → (𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)))
76alrimiv 1867 . 2 (Fun 𝐹 → ∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)))
8 breq1 3990 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
98mobidv 2055 . . . . . 6 (𝑥 = 𝐴 → (∃*𝑦 𝑥𝐹𝑦 ↔ ∃*𝑦 𝐴𝐹𝑦))
109imbi2d 229 . . . . 5 (𝑥 = 𝐴 → ((Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦) ↔ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)))
111simprbi 273 . . . . . 6 (Fun 𝐹 → ∀𝑥∃*𝑦 𝑥𝐹𝑦)
121119.21bi 1551 . . . . 5 (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦)
1310, 12vtoclg 2790 . . . 4 (𝐴 ∈ V → (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦))
1413com12 30 . . 3 (Fun 𝐹 → (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦))
15 moanimv 2094 . . 3 (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) ↔ (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦))
1614, 15sylibr 133 . 2 (Fun 𝐹 → ∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦))
17 moim 2083 . 2 (∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)) → (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) → ∃*𝑦 𝐴𝐹𝑦))
187, 16, 17sylc 62 1 (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1346   = wceq 1348  ∃*wmo 2020  wcel 2141  Vcvv 2730   class class class wbr 3987  Rel wrel 4614  Fun wfun 5190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-fun 5198
This theorem is referenced by:  funeu  5221  funco  5236  imadif  5276  fneu  5300  dff3im  5638  shftfn  10775
  Copyright terms: Public domain W3C validator