![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funmo | GIF version |
Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998.) |
Ref | Expression |
---|---|
funmo | ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun6 5232 | . . . . . 6 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | |
2 | 1 | simplbi 274 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) |
3 | brrelex 4668 | . . . . . 6 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝑦) → 𝐴 ∈ V) | |
4 | 3 | ex 115 | . . . . 5 ⊢ (Rel 𝐹 → (𝐴𝐹𝑦 → 𝐴 ∈ V)) |
5 | 2, 4 | syl 14 | . . . 4 ⊢ (Fun 𝐹 → (𝐴𝐹𝑦 → 𝐴 ∈ V)) |
6 | 5 | ancrd 326 | . . 3 ⊢ (Fun 𝐹 → (𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦))) |
7 | 6 | alrimiv 1874 | . 2 ⊢ (Fun 𝐹 → ∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦))) |
8 | breq1 4008 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
9 | 8 | mobidv 2062 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (∃*𝑦 𝑥𝐹𝑦 ↔ ∃*𝑦 𝐴𝐹𝑦)) |
10 | 9 | imbi2d 230 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦) ↔ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦))) |
11 | 1 | simprbi 275 | . . . . . 6 ⊢ (Fun 𝐹 → ∀𝑥∃*𝑦 𝑥𝐹𝑦) |
12 | 11 | 19.21bi 1558 | . . . . 5 ⊢ (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦) |
13 | 10, 12 | vtoclg 2799 | . . . 4 ⊢ (𝐴 ∈ V → (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)) |
14 | 13 | com12 30 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦)) |
15 | moanimv 2101 | . . 3 ⊢ (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) ↔ (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦)) | |
16 | 14, 15 | sylibr 134 | . 2 ⊢ (Fun 𝐹 → ∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦)) |
17 | moim 2090 | . 2 ⊢ (∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)) → (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) → ∃*𝑦 𝐴𝐹𝑦)) | |
18 | 7, 16, 17 | sylc 62 | 1 ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1351 = wceq 1353 ∃*wmo 2027 ∈ wcel 2148 Vcvv 2739 class class class wbr 4005 Rel wrel 4633 Fun wfun 5212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-fun 5220 |
This theorem is referenced by: funeu 5243 funco 5258 imadif 5298 fneu 5322 dff3im 5663 shftfn 10835 |
Copyright terms: Public domain | W3C validator |