| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funmo | GIF version | ||
| Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998.) |
| Ref | Expression |
|---|---|
| funmo | ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffun6 5272 | . . . . . 6 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | |
| 2 | 1 | simplbi 274 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) |
| 3 | brrelex 4703 | . . . . . 6 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝑦) → 𝐴 ∈ V) | |
| 4 | 3 | ex 115 | . . . . 5 ⊢ (Rel 𝐹 → (𝐴𝐹𝑦 → 𝐴 ∈ V)) |
| 5 | 2, 4 | syl 14 | . . . 4 ⊢ (Fun 𝐹 → (𝐴𝐹𝑦 → 𝐴 ∈ V)) |
| 6 | 5 | ancrd 326 | . . 3 ⊢ (Fun 𝐹 → (𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦))) |
| 7 | 6 | alrimiv 1888 | . 2 ⊢ (Fun 𝐹 → ∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦))) |
| 8 | breq1 4036 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
| 9 | 8 | mobidv 2081 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (∃*𝑦 𝑥𝐹𝑦 ↔ ∃*𝑦 𝐴𝐹𝑦)) |
| 10 | 9 | imbi2d 230 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦) ↔ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦))) |
| 11 | 1 | simprbi 275 | . . . . . 6 ⊢ (Fun 𝐹 → ∀𝑥∃*𝑦 𝑥𝐹𝑦) |
| 12 | 11 | 19.21bi 1572 | . . . . 5 ⊢ (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦) |
| 13 | 10, 12 | vtoclg 2824 | . . . 4 ⊢ (𝐴 ∈ V → (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)) |
| 14 | 13 | com12 30 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦)) |
| 15 | moanimv 2120 | . . 3 ⊢ (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) ↔ (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦)) | |
| 16 | 14, 15 | sylibr 134 | . 2 ⊢ (Fun 𝐹 → ∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦)) |
| 17 | moim 2109 | . 2 ⊢ (∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)) → (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) → ∃*𝑦 𝐴𝐹𝑦)) | |
| 18 | 7, 16, 17 | sylc 62 | 1 ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∃*wmo 2046 ∈ wcel 2167 Vcvv 2763 class class class wbr 4033 Rel wrel 4668 Fun wfun 5252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-fun 5260 |
| This theorem is referenced by: funeu 5283 funco 5298 imadif 5338 fneu 5362 dff3im 5707 shftfn 10989 |
| Copyright terms: Public domain | W3C validator |