![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funmo | GIF version |
Description: A function has at most one value for each argument. (Contributed by NM, 24-May-1998.) |
Ref | Expression |
---|---|
funmo | ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffun6 5063 | . . . . . 6 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦)) | |
2 | 1 | simplbi 269 | . . . . 5 ⊢ (Fun 𝐹 → Rel 𝐹) |
3 | brrelex 4507 | . . . . . 6 ⊢ ((Rel 𝐹 ∧ 𝐴𝐹𝑦) → 𝐴 ∈ V) | |
4 | 3 | ex 114 | . . . . 5 ⊢ (Rel 𝐹 → (𝐴𝐹𝑦 → 𝐴 ∈ V)) |
5 | 2, 4 | syl 14 | . . . 4 ⊢ (Fun 𝐹 → (𝐴𝐹𝑦 → 𝐴 ∈ V)) |
6 | 5 | ancrd 320 | . . 3 ⊢ (Fun 𝐹 → (𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦))) |
7 | 6 | alrimiv 1809 | . 2 ⊢ (Fun 𝐹 → ∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦))) |
8 | breq1 3870 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
9 | 8 | mobidv 1991 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (∃*𝑦 𝑥𝐹𝑦 ↔ ∃*𝑦 𝐴𝐹𝑦)) |
10 | 9 | imbi2d 229 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦) ↔ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦))) |
11 | 1 | simprbi 270 | . . . . . 6 ⊢ (Fun 𝐹 → ∀𝑥∃*𝑦 𝑥𝐹𝑦) |
12 | 11 | 19.21bi 1502 | . . . . 5 ⊢ (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦) |
13 | 10, 12 | vtoclg 2693 | . . . 4 ⊢ (𝐴 ∈ V → (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦)) |
14 | 13 | com12 30 | . . 3 ⊢ (Fun 𝐹 → (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦)) |
15 | moanimv 2030 | . . 3 ⊢ (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) ↔ (𝐴 ∈ V → ∃*𝑦 𝐴𝐹𝑦)) | |
16 | 14, 15 | sylibr 133 | . 2 ⊢ (Fun 𝐹 → ∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦)) |
17 | moim 2019 | . 2 ⊢ (∀𝑦(𝐴𝐹𝑦 → (𝐴 ∈ V ∧ 𝐴𝐹𝑦)) → (∃*𝑦(𝐴 ∈ V ∧ 𝐴𝐹𝑦) → ∃*𝑦 𝐴𝐹𝑦)) | |
18 | 7, 16, 17 | sylc 62 | 1 ⊢ (Fun 𝐹 → ∃*𝑦 𝐴𝐹𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1294 = wceq 1296 ∈ wcel 1445 ∃*wmo 1956 Vcvv 2633 class class class wbr 3867 Rel wrel 4472 Fun wfun 5043 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 df-opab 3922 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-fun 5051 |
This theorem is referenced by: funeu 5074 funco 5088 imadif 5128 fneu 5152 dff3im 5483 shftfn 10373 |
Copyright terms: Public domain | W3C validator |