Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzospliti | GIF version |
Description: One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
fzospliti | ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ) | |
2 | elfzoelz 10082 | . . . . . 6 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) | |
3 | 2 | adantr 274 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℤ) |
4 | zlelttric 9236 | . . . . 5 ⊢ ((𝐷 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐷 ≤ 𝐴 ∨ 𝐴 < 𝐷)) | |
5 | 1, 3, 4 | syl2anc 409 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷 ≤ 𝐴 ∨ 𝐴 < 𝐷)) |
6 | 5 | orcomd 719 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷 ∨ 𝐷 ≤ 𝐴)) |
7 | elfzole1 10090 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ≤ 𝐴) | |
8 | 7 | adantr 274 | . . . . . 6 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵 ≤ 𝐴) |
9 | 8 | a1d 22 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷 → 𝐵 ≤ 𝐴)) |
10 | 9 | ancrd 324 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷 → (𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷))) |
11 | elfzolt2 10091 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 < 𝐶) | |
12 | 11 | adantr 274 | . . . . . 6 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 < 𝐶) |
13 | 12 | a1d 22 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷 ≤ 𝐴 → 𝐴 < 𝐶)) |
14 | 13 | ancld 323 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷 ≤ 𝐴 → (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶))) |
15 | 10, 14 | orim12d 776 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐴 < 𝐷 ∨ 𝐷 ≤ 𝐴) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷) ∨ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶)))) |
16 | 6, 15 | mpd 13 | . 2 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷) ∨ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶))) |
17 | elfzoel1 10080 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | |
18 | 17 | adantr 274 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵 ∈ ℤ) |
19 | elfzo 10084 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷))) | |
20 | 3, 18, 1, 19 | syl3anc 1228 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷))) |
21 | elfzoel2 10081 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | |
22 | 21 | adantr 274 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℤ) |
23 | elfzo 10084 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐷..^𝐶) ↔ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶))) | |
24 | 3, 1, 22, 23 | syl3anc 1228 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐷..^𝐶) ↔ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶))) |
25 | 20, 24 | orbi12d 783 | . 2 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶)) ↔ ((𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷) ∨ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶)))) |
26 | 16, 25 | mpbird 166 | 1 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 < clt 7933 ≤ cle 7934 ℤcz 9191 ..^cfzo 10077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-fzo 10078 |
This theorem is referenced by: fzosplit 10112 fzocatel 10134 dfphi2 12152 |
Copyright terms: Public domain | W3C validator |