ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzospliti GIF version

Theorem fzospliti 9893
Description: One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzospliti ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶)))

Proof of Theorem fzospliti
StepHypRef Expression
1 simpr 109 . . . . 5 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ)
2 elfzoelz 9864 . . . . . 6 (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ)
32adantr 272 . . . . 5 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℤ)
4 zlelttric 9050 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐷𝐴𝐴 < 𝐷))
51, 3, 4syl2anc 406 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷𝐴𝐴 < 𝐷))
65orcomd 701 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷𝐷𝐴))
7 elfzole1 9872 . . . . . . 7 (𝐴 ∈ (𝐵..^𝐶) → 𝐵𝐴)
87adantr 272 . . . . . 6 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵𝐴)
98a1d 22 . . . . 5 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷𝐵𝐴))
109ancrd 322 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷 → (𝐵𝐴𝐴 < 𝐷)))
11 elfzolt2 9873 . . . . . . 7 (𝐴 ∈ (𝐵..^𝐶) → 𝐴 < 𝐶)
1211adantr 272 . . . . . 6 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 < 𝐶)
1312a1d 22 . . . . 5 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷𝐴𝐴 < 𝐶))
1413ancld 321 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷𝐴 → (𝐷𝐴𝐴 < 𝐶)))
1510, 14orim12d 758 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐴 < 𝐷𝐷𝐴) → ((𝐵𝐴𝐴 < 𝐷) ∨ (𝐷𝐴𝐴 < 𝐶))))
166, 15mpd 13 . 2 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐵𝐴𝐴 < 𝐷) ∨ (𝐷𝐴𝐴 < 𝐶)))
17 elfzoel1 9862 . . . . 5 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)
1817adantr 272 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵 ∈ ℤ)
19 elfzo 9866 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ↔ (𝐵𝐴𝐴 < 𝐷)))
203, 18, 1, 19syl3anc 1199 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ↔ (𝐵𝐴𝐴 < 𝐷)))
21 elfzoel2 9863 . . . . 5 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ)
2221adantr 272 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℤ)
23 elfzo 9866 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐷..^𝐶) ↔ (𝐷𝐴𝐴 < 𝐶)))
243, 1, 22, 23syl3anc 1199 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐷..^𝐶) ↔ (𝐷𝐴𝐴 < 𝐶)))
2520, 24orbi12d 765 . 2 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶)) ↔ ((𝐵𝐴𝐴 < 𝐷) ∨ (𝐷𝐴𝐴 < 𝐶))))
2616, 25mpbird 166 1 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 680  wcel 1463   class class class wbr 3897  (class class class)co 5740   < clt 7764  cle 7765  cz 9005  ..^cfzo 9859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-inn 8678  df-n0 8929  df-z 9006  df-uz 9276  df-fz 9731  df-fzo 9860
This theorem is referenced by:  fzosplit  9894  fzocatel  9916  dfphi2  11791
  Copyright terms: Public domain W3C validator