| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzospliti | GIF version | ||
| Description: One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| fzospliti | ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ) | |
| 2 | elfzoelz 10311 | . . . . . 6 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ) | |
| 3 | 2 | adantr 276 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℤ) |
| 4 | zlelttric 9459 | . . . . 5 ⊢ ((𝐷 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐷 ≤ 𝐴 ∨ 𝐴 < 𝐷)) | |
| 5 | 1, 3, 4 | syl2anc 411 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷 ≤ 𝐴 ∨ 𝐴 < 𝐷)) |
| 6 | 5 | orcomd 733 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷 ∨ 𝐷 ≤ 𝐴)) |
| 7 | elfzole1 10320 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ≤ 𝐴) | |
| 8 | 7 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵 ≤ 𝐴) |
| 9 | 8 | a1d 22 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷 → 𝐵 ≤ 𝐴)) |
| 10 | 9 | ancrd 326 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷 → (𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷))) |
| 11 | elfzolt2 10321 | . . . . . . 7 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐴 < 𝐶) | |
| 12 | 11 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 < 𝐶) |
| 13 | 12 | a1d 22 | . . . . 5 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷 ≤ 𝐴 → 𝐴 < 𝐶)) |
| 14 | 13 | ancld 325 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷 ≤ 𝐴 → (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶))) |
| 15 | 10, 14 | orim12d 790 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐴 < 𝐷 ∨ 𝐷 ≤ 𝐴) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷) ∨ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶)))) |
| 16 | 6, 15 | mpd 13 | . 2 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷) ∨ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶))) |
| 17 | elfzoel1 10309 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) | |
| 18 | 17 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵 ∈ ℤ) |
| 19 | elfzo 10313 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷))) | |
| 20 | 3, 18, 1, 19 | syl3anc 1252 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷))) |
| 21 | elfzoel2 10310 | . . . . 5 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ) | |
| 22 | 21 | adantr 276 | . . . 4 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℤ) |
| 23 | elfzo 10313 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐷..^𝐶) ↔ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶))) | |
| 24 | 3, 1, 22, 23 | syl3anc 1252 | . . 3 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐷..^𝐶) ↔ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶))) |
| 25 | 20, 24 | orbi12d 797 | . 2 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶)) ↔ ((𝐵 ≤ 𝐴 ∧ 𝐴 < 𝐷) ∨ (𝐷 ≤ 𝐴 ∧ 𝐴 < 𝐶)))) |
| 26 | 16, 25 | mpbird 167 | 1 ⊢ ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 712 ∈ wcel 2180 class class class wbr 4062 (class class class)co 5974 < clt 8149 ≤ cle 8150 ℤcz 9414 ..^cfzo 10306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-n0 9338 df-z 9415 df-uz 9691 df-fz 10173 df-fzo 10307 |
| This theorem is referenced by: fzosplit 10343 fzocatel 10372 ccatass 11109 ccatswrd 11168 ccatpfx 11199 dfphi2 12708 |
| Copyright terms: Public domain | W3C validator |