ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzospliti GIF version

Theorem fzospliti 10342
Description: One direction of splitting a half-open integer range in half. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
fzospliti ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶)))

Proof of Theorem fzospliti
StepHypRef Expression
1 simpr 110 . . . . 5 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ)
2 elfzoelz 10311 . . . . . 6 (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ)
32adantr 276 . . . . 5 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℤ)
4 zlelttric 9459 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐷𝐴𝐴 < 𝐷))
51, 3, 4syl2anc 411 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷𝐴𝐴 < 𝐷))
65orcomd 733 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷𝐷𝐴))
7 elfzole1 10320 . . . . . . 7 (𝐴 ∈ (𝐵..^𝐶) → 𝐵𝐴)
87adantr 276 . . . . . 6 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵𝐴)
98a1d 22 . . . . 5 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷𝐵𝐴))
109ancrd 326 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 < 𝐷 → (𝐵𝐴𝐴 < 𝐷)))
11 elfzolt2 10321 . . . . . . 7 (𝐴 ∈ (𝐵..^𝐶) → 𝐴 < 𝐶)
1211adantr 276 . . . . . 6 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 < 𝐶)
1312a1d 22 . . . . 5 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷𝐴𝐴 < 𝐶))
1413ancld 325 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐷𝐴 → (𝐷𝐴𝐴 < 𝐶)))
1510, 14orim12d 790 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐴 < 𝐷𝐷𝐴) → ((𝐵𝐴𝐴 < 𝐷) ∨ (𝐷𝐴𝐴 < 𝐶))))
166, 15mpd 13 . 2 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐵𝐴𝐴 < 𝐷) ∨ (𝐷𝐴𝐴 < 𝐶)))
17 elfzoel1 10309 . . . . 5 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)
1817adantr 276 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵 ∈ ℤ)
19 elfzo 10313 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ↔ (𝐵𝐴𝐴 < 𝐷)))
203, 18, 1, 19syl3anc 1252 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ↔ (𝐵𝐴𝐴 < 𝐷)))
21 elfzoel2 10310 . . . . 5 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ)
2221adantr 276 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℤ)
23 elfzo 10313 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (𝐷..^𝐶) ↔ (𝐷𝐴𝐴 < 𝐶)))
243, 1, 22, 23syl3anc 1252 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐷..^𝐶) ↔ (𝐷𝐴𝐴 < 𝐶)))
2520, 24orbi12d 797 . 2 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶)) ↔ ((𝐵𝐴𝐴 < 𝐷) ∨ (𝐷𝐴𝐴 < 𝐶))))
2616, 25mpbird 167 1 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 ∈ (𝐵..^𝐷) ∨ 𝐴 ∈ (𝐷..^𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 712  wcel 2180   class class class wbr 4062  (class class class)co 5974   < clt 8149  cle 8150  cz 9414  ..^cfzo 10306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-fzo 10307
This theorem is referenced by:  fzosplit  10343  fzocatel  10372  ccatass  11109  ccatswrd  11168  ccatpfx  11199  dfphi2  12708
  Copyright terms: Public domain W3C validator