Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrnres GIF version

Theorem ssrnres 5021
 Description: Subset of the range of a restriction. (Contributed by NM, 16-Jan-2006.)
Assertion
Ref Expression
ssrnres (𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)

Proof of Theorem ssrnres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3324 . . . . 5 (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)
2 rnss 4809 . . . . 5 ((𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) → ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵))
31, 2ax-mp 5 . . . 4 ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵)
4 rnxpss 5010 . . . 4 ran (𝐴 × 𝐵) ⊆ 𝐵
53, 4sstri 3133 . . 3 ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ 𝐵
6 eqss 3139 . . 3 (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ (ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵))))
75, 6mpbiran 925 . 2 (ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)))
8 ssid 3144 . . . . . . . 8 𝐴𝐴
9 ssv 3146 . . . . . . . 8 𝐵 ⊆ V
10 xpss12 4686 . . . . . . . 8 ((𝐴𝐴𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (𝐴 × V))
118, 9, 10mp2an 423 . . . . . . 7 (𝐴 × 𝐵) ⊆ (𝐴 × V)
12 sslin 3329 . . . . . . 7 ((𝐴 × 𝐵) ⊆ (𝐴 × V) → (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶 ∩ (𝐴 × V)))
1311, 12ax-mp 5 . . . . . 6 (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶 ∩ (𝐴 × V))
14 df-res 4591 . . . . . 6 (𝐶𝐴) = (𝐶 ∩ (𝐴 × V))
1513, 14sseqtrri 3159 . . . . 5 (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶𝐴)
16 rnss 4809 . . . . 5 ((𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶𝐴) → ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶𝐴))
1715, 16ax-mp 5 . . . 4 ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶𝐴)
18 sstr 3132 . . . 4 ((𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) ∧ ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶𝐴)) → 𝐵 ⊆ ran (𝐶𝐴))
1917, 18mpan2 422 . . 3 (𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) → 𝐵 ⊆ ran (𝐶𝐴))
20 ssel 3118 . . . . . . 7 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵𝑦 ∈ ran (𝐶𝐴)))
21 vex 2712 . . . . . . . 8 𝑦 ∈ V
2221elrn2 4821 . . . . . . 7 (𝑦 ∈ ran (𝐶𝐴) ↔ ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴))
2320, 22syl6ib 160 . . . . . 6 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵 → ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴)))
2423ancrd 324 . . . . 5 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵 → (∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵)))
2521elrn2 4821 . . . . . 6 (𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)))
26 elin 3286 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
27 opelxp 4609 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
2827anbi2i 453 . . . . . . . 8 ((⟨𝑥, 𝑦⟩ ∈ 𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐶 ∧ (𝑥𝐴𝑦𝐵)))
2921opelres 4864 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐶𝑥𝐴))
3029anbi1i 454 . . . . . . . . 9 ((⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐶𝑥𝐴) ∧ 𝑦𝐵))
31 anass 399 . . . . . . . . 9 (((⟨𝑥, 𝑦⟩ ∈ 𝐶𝑥𝐴) ∧ 𝑦𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐶 ∧ (𝑥𝐴𝑦𝐵)))
3230, 31bitr2i 184 . . . . . . . 8 ((⟨𝑥, 𝑦⟩ ∈ 𝐶 ∧ (𝑥𝐴𝑦𝐵)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵))
3326, 28, 323bitri 205 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵))
3433exbii 1582 . . . . . 6 (∃𝑥𝑥, 𝑦⟩ ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥(⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵))
35 19.41v 1879 . . . . . 6 (∃𝑥(⟨𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵) ↔ (∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵))
3625, 34, 353bitri 205 . . . . 5 (𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ (∃𝑥𝑥, 𝑦⟩ ∈ (𝐶𝐴) ∧ 𝑦𝐵))
3724, 36syl6ibr 161 . . . 4 (𝐵 ⊆ ran (𝐶𝐴) → (𝑦𝐵𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵))))
3837ssrdv 3130 . . 3 (𝐵 ⊆ ran (𝐶𝐴) → 𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)))
3919, 38impbii 125 . 2 (𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ 𝐵 ⊆ ran (𝐶𝐴))
407, 39bitr2i 184 1 (𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)
 Colors of variables: wff set class Syntax hints:   ∧ wa 103   ↔ wb 104   = wceq 1332  ∃wex 1469   ∈ wcel 2125  Vcvv 2709   ∩ cin 3097   ⊆ wss 3098  ⟨cop 3559   × cxp 4577  ran crn 4580   ↾ cres 4581 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-xp 4585  df-rel 4586  df-cnv 4587  df-dm 4589  df-rn 4590  df-res 4591 This theorem is referenced by:  rninxp  5022
 Copyright terms: Public domain W3C validator