Step | Hyp | Ref
| Expression |
1 | | inss2 3343 |
. . . . 5
⊢ (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) |
2 | | rnss 4834 |
. . . . 5
⊢ ((𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) → ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵)) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ ran
(𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐴 × 𝐵) |
4 | | rnxpss 5035 |
. . . 4
⊢ ran
(𝐴 × 𝐵) ⊆ 𝐵 |
5 | 3, 4 | sstri 3151 |
. . 3
⊢ ran
(𝐶 ∩ (𝐴 × 𝐵)) ⊆ 𝐵 |
6 | | eqss 3157 |
. . 3
⊢ (ran
(𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ (ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ 𝐵 ∧ 𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)))) |
7 | 5, 6 | mpbiran 930 |
. 2
⊢ (ran
(𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ 𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵))) |
8 | | ssid 3162 |
. . . . . . . 8
⊢ 𝐴 ⊆ 𝐴 |
9 | | ssv 3164 |
. . . . . . . 8
⊢ 𝐵 ⊆ V |
10 | | xpss12 4711 |
. . . . . . . 8
⊢ ((𝐴 ⊆ 𝐴 ∧ 𝐵 ⊆ V) → (𝐴 × 𝐵) ⊆ (𝐴 × V)) |
11 | 8, 9, 10 | mp2an 423 |
. . . . . . 7
⊢ (𝐴 × 𝐵) ⊆ (𝐴 × V) |
12 | | sslin 3348 |
. . . . . . 7
⊢ ((𝐴 × 𝐵) ⊆ (𝐴 × V) → (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶 ∩ (𝐴 × V))) |
13 | 11, 12 | ax-mp 5 |
. . . . . 6
⊢ (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶 ∩ (𝐴 × V)) |
14 | | df-res 4616 |
. . . . . 6
⊢ (𝐶 ↾ 𝐴) = (𝐶 ∩ (𝐴 × V)) |
15 | 13, 14 | sseqtrri 3177 |
. . . . 5
⊢ (𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶 ↾ 𝐴) |
16 | | rnss 4834 |
. . . . 5
⊢ ((𝐶 ∩ (𝐴 × 𝐵)) ⊆ (𝐶 ↾ 𝐴) → ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶 ↾ 𝐴)) |
17 | 15, 16 | ax-mp 5 |
. . . 4
⊢ ran
(𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶 ↾ 𝐴) |
18 | | sstr 3150 |
. . . 4
⊢ ((𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) ∧ ran (𝐶 ∩ (𝐴 × 𝐵)) ⊆ ran (𝐶 ↾ 𝐴)) → 𝐵 ⊆ ran (𝐶 ↾ 𝐴)) |
19 | 17, 18 | mpan2 422 |
. . 3
⊢ (𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) → 𝐵 ⊆ ran (𝐶 ↾ 𝐴)) |
20 | | ssel 3136 |
. . . . . . 7
⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) → (𝑦 ∈ 𝐵 → 𝑦 ∈ ran (𝐶 ↾ 𝐴))) |
21 | | vex 2729 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
22 | 21 | elrn2 4846 |
. . . . . . 7
⊢ (𝑦 ∈ ran (𝐶 ↾ 𝐴) ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴)) |
23 | 20, 22 | syl6ib 160 |
. . . . . 6
⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) → (𝑦 ∈ 𝐵 → ∃𝑥〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴))) |
24 | 23 | ancrd 324 |
. . . . 5
⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) → (𝑦 ∈ 𝐵 → (∃𝑥〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ∧ 𝑦 ∈ 𝐵))) |
25 | 21 | elrn2 4846 |
. . . . . 6
⊢ (𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ (𝐶 ∩ (𝐴 × 𝐵))) |
26 | | elin 3305 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) |
27 | | opelxp 4634 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) |
28 | 27 | anbi2i 453 |
. . . . . . . 8
⊢
((〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) ↔ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
29 | 21 | opelres 4889 |
. . . . . . . . . 10
⊢
(〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ↔ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴)) |
30 | 29 | anbi1i 454 |
. . . . . . . . 9
⊢
((〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ∧ 𝑦 ∈ 𝐵) ↔ ((〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵)) |
31 | | anass 399 |
. . . . . . . . 9
⊢
(((〈𝑥, 𝑦〉 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ↔ (〈𝑥, 𝑦〉 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
32 | 30, 31 | bitr2i 184 |
. . . . . . . 8
⊢
((〈𝑥, 𝑦〉 ∈ 𝐶 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ↔ (〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ∧ 𝑦 ∈ 𝐵)) |
33 | 26, 28, 32 | 3bitri 205 |
. . . . . . 7
⊢
(〈𝑥, 𝑦〉 ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ (〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ∧ 𝑦 ∈ 𝐵)) |
34 | 33 | exbii 1593 |
. . . . . 6
⊢
(∃𝑥〈𝑥, 𝑦〉 ∈ (𝐶 ∩ (𝐴 × 𝐵)) ↔ ∃𝑥(〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ∧ 𝑦 ∈ 𝐵)) |
35 | | 19.41v 1890 |
. . . . . 6
⊢
(∃𝑥(〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ∧ 𝑦 ∈ 𝐵) ↔ (∃𝑥〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ∧ 𝑦 ∈ 𝐵)) |
36 | 25, 34, 35 | 3bitri 205 |
. . . . 5
⊢ (𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ (∃𝑥〈𝑥, 𝑦〉 ∈ (𝐶 ↾ 𝐴) ∧ 𝑦 ∈ 𝐵)) |
37 | 24, 36 | syl6ibr 161 |
. . . 4
⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) → (𝑦 ∈ 𝐵 → 𝑦 ∈ ran (𝐶 ∩ (𝐴 × 𝐵)))) |
38 | 37 | ssrdv 3148 |
. . 3
⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) → 𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵))) |
39 | 19, 38 | impbii 125 |
. 2
⊢ (𝐵 ⊆ ran (𝐶 ∩ (𝐴 × 𝐵)) ↔ 𝐵 ⊆ ran (𝐶 ↾ 𝐴)) |
40 | 7, 39 | bitr2i 184 |
1
⊢ (𝐵 ⊆ ran (𝐶 ↾ 𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵) |