Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dffo5 | GIF version |
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.) |
Ref | Expression |
---|---|
dffo5 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffo4 5633 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) | |
2 | rexex 2512 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 → ∃𝑥 𝑥𝐹𝑦) | |
3 | 2 | ralimi 2529 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 → ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦) |
4 | 3 | anim2i 340 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦)) |
5 | ffn 5337 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
6 | fnbr 5290 | . . . . . . . . . 10 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) | |
7 | 6 | ex 114 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
8 | 5, 7 | syl 14 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
9 | 8 | ancrd 324 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → (𝑥𝐹𝑦 → (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
10 | 9 | eximdv 1868 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
11 | df-rex 2450 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦)) | |
12 | 10, 11 | syl6ibr 161 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
13 | 12 | ralimdv 2534 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
14 | 13 | imdistani 442 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
15 | 4, 14 | impbii 125 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦)) |
16 | 1, 15 | bitri 183 | 1 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 class class class wbr 3982 Fn wfn 5183 ⟶wf 5184 –onto→wfo 5186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |