![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dffo5 | GIF version |
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.) |
Ref | Expression |
---|---|
dffo5 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffo4 5666 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) | |
2 | rexex 2523 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 → ∃𝑥 𝑥𝐹𝑦) | |
3 | 2 | ralimi 2540 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 → ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦) |
4 | 3 | anim2i 342 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦)) |
5 | ffn 5367 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
6 | fnbr 5320 | . . . . . . . . . 10 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) | |
7 | 6 | ex 115 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
8 | 5, 7 | syl 14 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
9 | 8 | ancrd 326 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → (𝑥𝐹𝑦 → (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
10 | 9 | eximdv 1880 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
11 | df-rex 2461 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦)) | |
12 | 10, 11 | imbitrrdi 162 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
13 | 12 | ralimdv 2545 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
14 | 13 | imdistani 445 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
15 | 4, 14 | impbii 126 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦)) |
16 | 1, 15 | bitri 184 | 1 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∃wex 1492 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 class class class wbr 4005 Fn wfn 5213 ⟶wf 5214 –onto→wfo 5216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fo 5224 df-fv 5226 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |