ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancrd Unicode version

Theorem ancrd 324
Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.)
Hypothesis
Ref Expression
ancrd.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
ancrd  |-  ( ph  ->  ( ps  ->  ( ch  /\  ps ) ) )

Proof of Theorem ancrd
StepHypRef Expression
1 ancrd.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
2 idd 21 . 2  |-  ( ph  ->  ( ps  ->  ps ) )
31, 2jcad 305 1  |-  ( ph  ->  ( ps  ->  ( ch  /\  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107
This theorem is referenced by:  impac  379  euan  2070  reupick  3406  prel12  3751  ssrnres  5046  funmo  5203  funssres  5230  dffo4  5633  dffo5  5634  fzospliti  10111  rexuz3  10932  qredeq  12028  prmdvdsfz  12071
  Copyright terms: Public domain W3C validator