ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancrd Unicode version

Theorem ancrd 326
Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.)
Hypothesis
Ref Expression
ancrd.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
ancrd  |-  ( ph  ->  ( ps  ->  ( ch  /\  ps ) ) )

Proof of Theorem ancrd
StepHypRef Expression
1 ancrd.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
2 idd 21 . 2  |-  ( ph  ->  ( ps  ->  ps ) )
31, 2jcad 307 1  |-  ( ph  ->  ( ps  ->  ( ch  /\  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  impac  381  euan  2134  reupick  3488  prel12  3848  ssrelrn  4913  ssrnres  5170  funmo  5332  funssres  5359  dffo4  5782  dffo5  5783  en2prde  7362  fzospliti  10370  rexuz3  11496  qredeq  12613  prmdvdsfz  12656
  Copyright terms: Public domain W3C validator