ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reupick GIF version

Theorem reupick 3266
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by NM, 21-Aug-1999.)
Assertion
Ref Expression
reupick (((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) ∧ 𝜑) → (𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reupick
StepHypRef Expression
1 ssel 3004 . . 3 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21ad2antrr 472 . 2 (((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) ∧ 𝜑) → (𝑥𝐴𝑥𝐵))
3 df-rex 2359 . . . . . 6 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
4 df-reu 2360 . . . . . 6 (∃!𝑥𝐵 𝜑 ↔ ∃!𝑥(𝑥𝐵𝜑))
53, 4anbi12i 448 . . . . 5 ((∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∧ ∃!𝑥(𝑥𝐵𝜑)))
61ancrd 319 . . . . . . . . . . 11 (𝐴𝐵 → (𝑥𝐴 → (𝑥𝐵𝑥𝐴)))
76anim1d 329 . . . . . . . . . 10 (𝐴𝐵 → ((𝑥𝐴𝜑) → ((𝑥𝐵𝑥𝐴) ∧ 𝜑)))
8 an32 527 . . . . . . . . . 10 (((𝑥𝐵𝑥𝐴) ∧ 𝜑) ↔ ((𝑥𝐵𝜑) ∧ 𝑥𝐴))
97, 8syl6ib 159 . . . . . . . . 9 (𝐴𝐵 → ((𝑥𝐴𝜑) → ((𝑥𝐵𝜑) ∧ 𝑥𝐴)))
109eximdv 1803 . . . . . . . 8 (𝐴𝐵 → (∃𝑥(𝑥𝐴𝜑) → ∃𝑥((𝑥𝐵𝜑) ∧ 𝑥𝐴)))
11 eupick 2022 . . . . . . . . 9 ((∃!𝑥(𝑥𝐵𝜑) ∧ ∃𝑥((𝑥𝐵𝜑) ∧ 𝑥𝐴)) → ((𝑥𝐵𝜑) → 𝑥𝐴))
1211ex 113 . . . . . . . 8 (∃!𝑥(𝑥𝐵𝜑) → (∃𝑥((𝑥𝐵𝜑) ∧ 𝑥𝐴) → ((𝑥𝐵𝜑) → 𝑥𝐴)))
1310, 12syl9 71 . . . . . . 7 (𝐴𝐵 → (∃!𝑥(𝑥𝐵𝜑) → (∃𝑥(𝑥𝐴𝜑) → ((𝑥𝐵𝜑) → 𝑥𝐴))))
1413com23 77 . . . . . 6 (𝐴𝐵 → (∃𝑥(𝑥𝐴𝜑) → (∃!𝑥(𝑥𝐵𝜑) → ((𝑥𝐵𝜑) → 𝑥𝐴))))
1514imp32 253 . . . . 5 ((𝐴𝐵 ∧ (∃𝑥(𝑥𝐴𝜑) ∧ ∃!𝑥(𝑥𝐵𝜑))) → ((𝑥𝐵𝜑) → 𝑥𝐴))
165, 15sylan2b 281 . . . 4 ((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) → ((𝑥𝐵𝜑) → 𝑥𝐴))
1716expcomd 1371 . . 3 ((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) → (𝜑 → (𝑥𝐵𝑥𝐴)))
1817imp 122 . 2 (((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) ∧ 𝜑) → (𝑥𝐵𝑥𝐴))
192, 18impbid 127 1 (((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) ∧ 𝜑) → (𝑥𝐴𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wex 1422  wcel 1434  ∃!weu 1943  wrex 2354  ∃!wreu 2355  wss 2984
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-rex 2359  df-reu 2360  df-in 2990  df-ss 2997
This theorem is referenced by:  supelti  6604
  Copyright terms: Public domain W3C validator