Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prmdvdsfz | GIF version |
Description: Each integer greater than 1 and less then or equal to a fixed number is divisible by a prime less then or equal to this fixed number. (Contributed by AV, 15-Aug-2020.) |
Ref | Expression |
---|---|
prmdvdsfz | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 9977 | . . . 4 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ≥‘2)) | |
2 | 1 | adantl 275 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ (ℤ≥‘2)) |
3 | exprmfct 12092 | . . 3 ⊢ (𝐼 ∈ (ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝐼) | |
4 | 2, 3 | syl 14 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝐼) |
5 | prmz 12065 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
6 | eluz2nn 9525 | . . . . . . . 8 ⊢ (𝐼 ∈ (ℤ≥‘2) → 𝐼 ∈ ℕ) | |
7 | 1, 6 | syl 14 | . . . . . . 7 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ) |
8 | 7 | adantl 275 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ) |
9 | dvdsle 11804 | . . . . . 6 ⊢ ((𝑝 ∈ ℤ ∧ 𝐼 ∈ ℕ) → (𝑝 ∥ 𝐼 → 𝑝 ≤ 𝐼)) | |
10 | 5, 8, 9 | syl2anr 288 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝐼 → 𝑝 ≤ 𝐼)) |
11 | elfzle2 9984 | . . . . . . 7 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ≤ 𝑁) | |
12 | 11 | ad2antlr 486 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → 𝐼 ≤ 𝑁) |
13 | 5 | zred 9334 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℝ) |
14 | 13 | adantl 275 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ) |
15 | elfzelz 9981 | . . . . . . . . 9 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ) | |
16 | 15 | zred 9334 | . . . . . . . 8 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℝ) |
17 | 16 | ad2antlr 486 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → 𝐼 ∈ ℝ) |
18 | nnre 8885 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
19 | 18 | ad2antrr 485 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℝ) |
20 | letr 8002 | . . . . . . 7 ⊢ ((𝑝 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑝 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁) → 𝑝 ≤ 𝑁)) | |
21 | 14, 17, 19, 20 | syl3anc 1233 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁) → 𝑝 ≤ 𝑁)) |
22 | 12, 21 | mpan2d 426 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 ≤ 𝐼 → 𝑝 ≤ 𝑁)) |
23 | 10, 22 | syld 45 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝐼 → 𝑝 ≤ 𝑁)) |
24 | 23 | ancrd 324 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝐼 → (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼))) |
25 | 24 | reximdva 2572 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑝 ∈ ℙ 𝑝 ∥ 𝐼 → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼))) |
26 | 4, 25 | mpd 13 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 ∃wrex 2449 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 ℝcr 7773 ≤ cle 7955 ℕcn 8878 2c2 8929 ℤcz 9212 ℤ≥cuz 9487 ...cfz 9965 ∥ cdvds 11749 ℙcprime 12061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-1o 6395 df-2o 6396 df-er 6513 df-en 6719 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fzo 10099 df-fl 10226 df-mod 10279 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-dvds 11750 df-prm 12062 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |