![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnlimc | GIF version |
Description: πΉ is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
cnlimc | β’ (π΄ β β β (πΉ β (π΄βcnββ) β (πΉ:π΄βΆβ β§ βπ₯ β π΄ (πΉβπ₯) β (πΉ limβ π₯)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3177 | . . . 4 β’ β β β | |
2 | eqid 2177 | . . . . 5 β’ (MetOpenβ(abs β β )) = (MetOpenβ(abs β β )) | |
3 | eqid 2177 | . . . . 5 β’ ((MetOpenβ(abs β β )) βΎt π΄) = ((MetOpenβ(abs β β )) βΎt π΄) | |
4 | 2 | cntoptopon 14071 | . . . . . 6 β’ (MetOpenβ(abs β β )) β (TopOnββ) |
5 | 4 | toponrestid 13560 | . . . . 5 β’ (MetOpenβ(abs β β )) = ((MetOpenβ(abs β β )) βΎt β) |
6 | 2, 3, 5 | cncfcncntop 14119 | . . . 4 β’ ((π΄ β β β§ β β β) β (π΄βcnββ) = (((MetOpenβ(abs β β )) βΎt π΄) Cn (MetOpenβ(abs β β )))) |
7 | 1, 6 | mpan2 425 | . . 3 β’ (π΄ β β β (π΄βcnββ) = (((MetOpenβ(abs β β )) βΎt π΄) Cn (MetOpenβ(abs β β )))) |
8 | 7 | eleq2d 2247 | . 2 β’ (π΄ β β β (πΉ β (π΄βcnββ) β πΉ β (((MetOpenβ(abs β β )) βΎt π΄) Cn (MetOpenβ(abs β β ))))) |
9 | resttopon 13710 | . . . 4 β’ (((MetOpenβ(abs β β )) β (TopOnββ) β§ π΄ β β) β ((MetOpenβ(abs β β )) βΎt π΄) β (TopOnβπ΄)) | |
10 | 4, 9 | mpan 424 | . . 3 β’ (π΄ β β β ((MetOpenβ(abs β β )) βΎt π΄) β (TopOnβπ΄)) |
11 | cncnp 13769 | . . 3 β’ ((((MetOpenβ(abs β β )) βΎt π΄) β (TopOnβπ΄) β§ (MetOpenβ(abs β β )) β (TopOnββ)) β (πΉ β (((MetOpenβ(abs β β )) βΎt π΄) Cn (MetOpenβ(abs β β ))) β (πΉ:π΄βΆβ β§ βπ₯ β π΄ πΉ β ((((MetOpenβ(abs β β )) βΎt π΄) CnP (MetOpenβ(abs β β )))βπ₯)))) | |
12 | 10, 4, 11 | sylancl 413 | . 2 β’ (π΄ β β β (πΉ β (((MetOpenβ(abs β β )) βΎt π΄) Cn (MetOpenβ(abs β β ))) β (πΉ:π΄βΆβ β§ βπ₯ β π΄ πΉ β ((((MetOpenβ(abs β β )) βΎt π΄) CnP (MetOpenβ(abs β β )))βπ₯)))) |
13 | 2, 3 | cnplimccntop 14178 | . . . . . 6 β’ ((π΄ β β β§ π₯ β π΄) β (πΉ β ((((MetOpenβ(abs β β )) βΎt π΄) CnP (MetOpenβ(abs β β )))βπ₯) β (πΉ:π΄βΆβ β§ (πΉβπ₯) β (πΉ limβ π₯)))) |
14 | 13 | baibd 923 | . . . . 5 β’ (((π΄ β β β§ π₯ β π΄) β§ πΉ:π΄βΆβ) β (πΉ β ((((MetOpenβ(abs β β )) βΎt π΄) CnP (MetOpenβ(abs β β )))βπ₯) β (πΉβπ₯) β (πΉ limβ π₯))) |
15 | 14 | an32s 568 | . . . 4 β’ (((π΄ β β β§ πΉ:π΄βΆβ) β§ π₯ β π΄) β (πΉ β ((((MetOpenβ(abs β β )) βΎt π΄) CnP (MetOpenβ(abs β β )))βπ₯) β (πΉβπ₯) β (πΉ limβ π₯))) |
16 | 15 | ralbidva 2473 | . . 3 β’ ((π΄ β β β§ πΉ:π΄βΆβ) β (βπ₯ β π΄ πΉ β ((((MetOpenβ(abs β β )) βΎt π΄) CnP (MetOpenβ(abs β β )))βπ₯) β βπ₯ β π΄ (πΉβπ₯) β (πΉ limβ π₯))) |
17 | 16 | pm5.32da 452 | . 2 β’ (π΄ β β β ((πΉ:π΄βΆβ β§ βπ₯ β π΄ πΉ β ((((MetOpenβ(abs β β )) βΎt π΄) CnP (MetOpenβ(abs β β )))βπ₯)) β (πΉ:π΄βΆβ β§ βπ₯ β π΄ (πΉβπ₯) β (πΉ limβ π₯)))) |
18 | 8, 12, 17 | 3bitrd 214 | 1 β’ (π΄ β β β (πΉ β (π΄βcnββ) β (πΉ:π΄βΆβ β§ βπ₯ β π΄ (πΉβπ₯) β (πΉ limβ π₯)))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 β wcel 2148 βwral 2455 β wss 3131 β ccom 4632 βΆwf 5214 βcfv 5218 (class class class)co 5877 βcc 7811 β cmin 8130 abscabs 11008 βΎt crest 12693 MetOpencmopn 13484 TopOnctopon 13549 Cn ccn 13724 CnP ccnp 13725 βcnβccncf 14096 limβ climc 14162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 ax-caucvg 7933 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-map 6652 df-pm 6653 df-sup 6985 df-inf 6986 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-n0 9179 df-z 9256 df-uz 9531 df-q 9622 df-rp 9656 df-xneg 9774 df-xadd 9775 df-seqfrec 10448 df-exp 10522 df-cj 10853 df-re 10854 df-im 10855 df-rsqrt 11009 df-abs 11010 df-rest 12695 df-topgen 12714 df-psmet 13486 df-xmet 13487 df-met 13488 df-bl 13489 df-mopn 13490 df-top 13537 df-topon 13550 df-bases 13582 df-cn 13727 df-cnp 13728 df-cncf 14097 df-limced 14164 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |