ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnlimc GIF version

Theorem cnlimc 15144
Description: 𝐹 is a continuous function iff the limit of the function at each point equals the value of the function. (Contributed by Mario Carneiro, 28-Dec-2016.)
Assertion
Ref Expression
cnlimc (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐹 lim 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem cnlimc
StepHypRef Expression
1 ssid 3213 . . . 4 ℂ ⊆ ℂ
2 eqid 2205 . . . . 5 (MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘ − ))
3 eqid 2205 . . . . 5 ((MetOpen‘(abs ∘ − )) ↾t 𝐴) = ((MetOpen‘(abs ∘ − )) ↾t 𝐴)
42cntoptopon 15004 . . . . . 6 (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)
54toponrestid 14493 . . . . 5 (MetOpen‘(abs ∘ − )) = ((MetOpen‘(abs ∘ − )) ↾t ℂ)
62, 3, 5cncfcncntop 15065 . . . 4 ((𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐴cn→ℂ) = (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − ))))
71, 6mpan2 425 . . 3 (𝐴 ⊆ ℂ → (𝐴cn→ℂ) = (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − ))))
87eleq2d 2275 . 2 (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴cn→ℂ) ↔ 𝐹 ∈ (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − )))))
9 resttopon 14643 . . . 4 (((MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((MetOpen‘(abs ∘ − )) ↾t 𝐴) ∈ (TopOn‘𝐴))
104, 9mpan 424 . . 3 (𝐴 ⊆ ℂ → ((MetOpen‘(abs ∘ − )) ↾t 𝐴) ∈ (TopOn‘𝐴))
11 cncnp 14702 . . 3 ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (MetOpen‘(abs ∘ − )) ∈ (TopOn‘ℂ)) → (𝐹 ∈ (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − ))) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥))))
1210, 4, 11sylancl 413 . 2 (𝐴 ⊆ ℂ → (𝐹 ∈ (((MetOpen‘(abs ∘ − )) ↾t 𝐴) Cn (MetOpen‘(abs ∘ − ))) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥))))
132, 3cnplimccntop 15142 . . . . . 6 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → (𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹𝑥) ∈ (𝐹 lim 𝑥))))
1413baibd 925 . . . . 5 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥) ↔ (𝐹𝑥) ∈ (𝐹 lim 𝑥)))
1514an32s 568 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) ∧ 𝑥𝐴) → (𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥) ↔ (𝐹𝑥) ∈ (𝐹 lim 𝑥)))
1615ralbidva 2502 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐹:𝐴⟶ℂ) → (∀𝑥𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥) ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐹 lim 𝑥)))
1716pm5.32da 452 . 2 (𝐴 ⊆ ℂ → ((𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 𝐹 ∈ ((((MetOpen‘(abs ∘ − )) ↾t 𝐴) CnP (MetOpen‘(abs ∘ − )))‘𝑥)) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐹 lim 𝑥))))
188, 12, 173bitrd 214 1 (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴cn→ℂ) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ (𝐹 lim 𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  wral 2484  wss 3166  ccom 4679  wf 5267  cfv 5271  (class class class)co 5944  cc 7923  cmin 8243  abscabs 11308  t crest 13071  MetOpencmopn 14303  TopOnctopon 14482   Cn ccn 14657   CnP ccnp 14658  cnccncf 15042   lim climc 15126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-map 6737  df-pm 6738  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-xneg 9894  df-xadd 9895  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-rest 13073  df-topgen 13092  df-psmet 14305  df-xmet 14306  df-met 14307  df-bl 14308  df-mopn 14309  df-top 14470  df-topon 14483  df-bases 14515  df-cn 14660  df-cnp 14661  df-cncf 15043  df-limced 15128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator