| Step | Hyp | Ref
| Expression |
| 1 | | eqger.x |
. . . . . . 7
⊢ 𝑋 = (Base‘𝐺) |
| 2 | | eqid 2196 |
. . . . . . 7
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 3 | | eqglact.3 |
. . . . . . 7
⊢ + =
(+g‘𝐺) |
| 4 | | eqger.r |
. . . . . . 7
⊢ ∼ =
(𝐺 ~QG
𝑌) |
| 5 | 1, 2, 3, 4 | eqgval 13429 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → (𝐴 ∼ 𝑥 ↔ (𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌))) |
| 6 | | 3anass 984 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌) ↔ (𝐴 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌))) |
| 7 | 5, 6 | bitrdi 196 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → (𝐴 ∼ 𝑥 ↔ (𝐴 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌)))) |
| 8 | 7 | baibd 924 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴 ∼ 𝑥 ↔ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌))) |
| 9 | 8 | 3impa 1196 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴 ∼ 𝑥 ↔ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌))) |
| 10 | 9 | abbidv 2314 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → {𝑥 ∣ 𝐴 ∼ 𝑥} = {𝑥 ∣ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌)}) |
| 11 | | dfec2 6604 |
. . 3
⊢ (𝐴 ∈ 𝑋 → [𝐴] ∼ = {𝑥 ∣ 𝐴 ∼ 𝑥}) |
| 12 | 11 | 3ad2ant3 1022 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = {𝑥 ∣ 𝐴 ∼ 𝑥}) |
| 13 | | eqid 2196 |
. . . . . . . . 9
⊢ (𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥))) = (𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥))) |
| 14 | 13, 1, 3, 2 | grplactcnv 13304 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴):𝑋–1-1-onto→𝑋 ∧ ◡((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘((invg‘𝐺)‘𝐴)))) |
| 15 | 14 | simprd 114 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ◡((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘((invg‘𝐺)‘𝐴))) |
| 16 | 13, 1 | grplactfval 13303 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑋 → ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥))) |
| 17 | 16 | adantl 277 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = (𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥))) |
| 18 | 17 | cnveqd 4843 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ◡((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘𝐴) = ◡(𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥))) |
| 19 | 1, 2 | grpinvcl 13250 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
| 20 | 13, 1 | grplactfval 13303 |
. . . . . . . 8
⊢
(((invg‘𝐺)‘𝐴) ∈ 𝑋 → ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘((invg‘𝐺)‘𝐴)) = (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥))) |
| 21 | 19, 20 | syl 14 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑔 ∈ 𝑋 ↦ (𝑥 ∈ 𝑋 ↦ (𝑔 + 𝑥)))‘((invg‘𝐺)‘𝐴)) = (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥))) |
| 22 | 15, 18, 21 | 3eqtr3d 2237 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ◡(𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) = (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥))) |
| 23 | 22 | cnveqd 4843 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ◡◡(𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) = ◡(𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥))) |
| 24 | 23 | 3adant2 1018 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → ◡◡(𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) = ◡(𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥))) |
| 25 | 24 | imaeq1d 5009 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → (◡◡(𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) = (◡(𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥)) “ 𝑌)) |
| 26 | | imacnvcnv 5135 |
. . 3
⊢ (◡◡(𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) = ((𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) |
| 27 | | eqid 2196 |
. . . . 5
⊢ (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥)) = (𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥)) |
| 28 | 27 | mptpreima 5164 |
. . . 4
⊢ (◡(𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥)) “ 𝑌) = {𝑥 ∈ 𝑋 ∣ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌} |
| 29 | | df-rab 2484 |
. . . 4
⊢ {𝑥 ∈ 𝑋 ∣ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌} = {𝑥 ∣ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌)} |
| 30 | 28, 29 | eqtri 2217 |
. . 3
⊢ (◡(𝑥 ∈ 𝑋 ↦ (((invg‘𝐺)‘𝐴) + 𝑥)) “ 𝑌) = {𝑥 ∣ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌)} |
| 31 | 25, 26, 30 | 3eqtr3g 2252 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌) = {𝑥 ∣ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘𝐴) + 𝑥) ∈ 𝑌)}) |
| 32 | 10, 12, 31 | 3eqtr4d 2239 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ((𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌)) |