ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscrng2 GIF version

Theorem iscrng2 13719
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
ringcl.b 𝐵 = (Base‘𝑅)
ringcl.t · = (.r𝑅)
Assertion
Ref Expression
iscrng2 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑅,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem iscrng2
StepHypRef Expression
1 elex 2782 . 2 (𝑅 ∈ CRing → 𝑅 ∈ V)
2 elex 2782 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ V)
32adantr 276 . 2 ((𝑅 ∈ Ring ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)) → 𝑅 ∈ V)
4 eqid 2204 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
54iscrng 13707 . . 3 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd))
64ringmgp 13706 . . . . 5 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
7 eqid 2204 . . . . . . . 8 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
8 eqid 2204 . . . . . . . 8 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
97, 8iscmn 13571 . . . . . . 7 ((mulGrp‘𝑅) ∈ CMnd ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥)))
10 ringcl.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
114, 10mgpbasg 13630 . . . . . . . . 9 (𝑅 ∈ V → 𝐵 = (Base‘(mulGrp‘𝑅)))
12 ringcl.t . . . . . . . . . . . . 13 · = (.r𝑅)
134, 12mgpplusgg 13628 . . . . . . . . . . . 12 (𝑅 ∈ V → · = (+g‘(mulGrp‘𝑅)))
1413oveqd 5960 . . . . . . . . . . 11 (𝑅 ∈ V → (𝑥 · 𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦))
1513oveqd 5960 . . . . . . . . . . 11 (𝑅 ∈ V → (𝑦 · 𝑥) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))
1614, 15eqeq12d 2219 . . . . . . . . . 10 (𝑅 ∈ V → ((𝑥 · 𝑦) = (𝑦 · 𝑥) ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥)))
1711, 16raleqbidv 2717 . . . . . . . . 9 (𝑅 ∈ V → (∀𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥) ↔ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥)))
1811, 17raleqbidv 2717 . . . . . . . 8 (𝑅 ∈ V → (∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥)))
1918anbi2d 464 . . . . . . 7 (𝑅 ∈ V → (((mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)) ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))))
209, 19bitr4id 199 . . . . . 6 (𝑅 ∈ V → ((mulGrp‘𝑅) ∈ CMnd ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥))))
2120baibd 924 . . . . 5 ((𝑅 ∈ V ∧ (mulGrp‘𝑅) ∈ Mnd) → ((mulGrp‘𝑅) ∈ CMnd ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))
226, 21sylan2 286 . . . 4 ((𝑅 ∈ V ∧ 𝑅 ∈ Ring) → ((mulGrp‘𝑅) ∈ CMnd ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))
2322pm5.32da 452 . . 3 (𝑅 ∈ V → ((𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd) ↔ (𝑅 ∈ Ring ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥))))
245, 23bitrid 192 . 2 (𝑅 ∈ V → (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥))))
251, 3, 24pm5.21nii 705 1 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1372  wcel 2175  wral 2483  Vcvv 2771  cfv 5270  (class class class)co 5943  Basecbs 12774  +gcplusg 12851  .rcmulr 12852  Mndcmnd 13190  CMndccmn 13562  mulGrpcmgp 13624  Ringcrg 13700  CRingccrg 13701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-plusg 12864  df-mulr 12865  df-cmn 13564  df-mgp 13625  df-ring 13702  df-cring 13703
This theorem is referenced by:  quscrng  14237
  Copyright terms: Public domain W3C validator