ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscrng2 GIF version

Theorem iscrng2 13511
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
ringcl.b 𝐵 = (Base‘𝑅)
ringcl.t · = (.r𝑅)
Assertion
Ref Expression
iscrng2 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑅,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem iscrng2
StepHypRef Expression
1 elex 2771 . 2 (𝑅 ∈ CRing → 𝑅 ∈ V)
2 elex 2771 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ V)
32adantr 276 . 2 ((𝑅 ∈ Ring ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)) → 𝑅 ∈ V)
4 eqid 2193 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
54iscrng 13499 . . 3 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd))
64ringmgp 13498 . . . . 5 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
7 eqid 2193 . . . . . . . 8 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
8 eqid 2193 . . . . . . . 8 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
97, 8iscmn 13363 . . . . . . 7 ((mulGrp‘𝑅) ∈ CMnd ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥)))
10 ringcl.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
114, 10mgpbasg 13422 . . . . . . . . 9 (𝑅 ∈ V → 𝐵 = (Base‘(mulGrp‘𝑅)))
12 ringcl.t . . . . . . . . . . . . 13 · = (.r𝑅)
134, 12mgpplusgg 13420 . . . . . . . . . . . 12 (𝑅 ∈ V → · = (+g‘(mulGrp‘𝑅)))
1413oveqd 5935 . . . . . . . . . . 11 (𝑅 ∈ V → (𝑥 · 𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦))
1513oveqd 5935 . . . . . . . . . . 11 (𝑅 ∈ V → (𝑦 · 𝑥) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))
1614, 15eqeq12d 2208 . . . . . . . . . 10 (𝑅 ∈ V → ((𝑥 · 𝑦) = (𝑦 · 𝑥) ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥)))
1711, 16raleqbidv 2706 . . . . . . . . 9 (𝑅 ∈ V → (∀𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥) ↔ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥)))
1811, 17raleqbidv 2706 . . . . . . . 8 (𝑅 ∈ V → (∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥)))
1918anbi2d 464 . . . . . . 7 (𝑅 ∈ V → (((mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)) ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))))
209, 19bitr4id 199 . . . . . 6 (𝑅 ∈ V → ((mulGrp‘𝑅) ∈ CMnd ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥))))
2120baibd 924 . . . . 5 ((𝑅 ∈ V ∧ (mulGrp‘𝑅) ∈ Mnd) → ((mulGrp‘𝑅) ∈ CMnd ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))
226, 21sylan2 286 . . . 4 ((𝑅 ∈ V ∧ 𝑅 ∈ Ring) → ((mulGrp‘𝑅) ∈ CMnd ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))
2322pm5.32da 452 . . 3 (𝑅 ∈ V → ((𝑅 ∈ Ring ∧ (mulGrp‘𝑅) ∈ CMnd) ↔ (𝑅 ∈ Ring ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥))))
245, 23bitrid 192 . 2 (𝑅 ∈ V → (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥))))
251, 3, 24pm5.21nii 705 1 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  .rcmulr 12696  Mndcmnd 12997  CMndccmn 13354  mulGrpcmgp 13416  Ringcrg 13492  CRingccrg 13493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-cmn 13356  df-mgp 13417  df-ring 13494  df-cring 13495
This theorem is referenced by:  quscrng  14029
  Copyright terms: Public domain W3C validator