Proof of Theorem iscrng2
Step | Hyp | Ref
| Expression |
1 | | elex 2746 |
. 2
⊢ (𝑅 ∈ CRing → 𝑅 ∈ V) |
2 | | elex 2746 |
. . 3
⊢ (𝑅 ∈ Ring → 𝑅 ∈ V) |
3 | 2 | adantr 276 |
. 2
⊢ ((𝑅 ∈ Ring ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)) → 𝑅 ∈ V) |
4 | | eqid 2175 |
. . . 4
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
5 | 4 | iscrng 12979 |
. . 3
⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧
(mulGrp‘𝑅) ∈
CMnd)) |
6 | 4 | ringmgp 12978 |
. . . . 5
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
7 | | eqid 2175 |
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) |
8 | | eqid 2175 |
. . . . . . . 8
⊢
(+g‘(mulGrp‘𝑅)) =
(+g‘(mulGrp‘𝑅)) |
9 | 7, 8 | iscmn 12892 |
. . . . . . 7
⊢
((mulGrp‘𝑅)
∈ CMnd ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈
(Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))) |
10 | | ringcl.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑅) |
11 | 4, 10 | mgpbasg 12930 |
. . . . . . . . 9
⊢ (𝑅 ∈ V → 𝐵 =
(Base‘(mulGrp‘𝑅))) |
12 | | ringcl.t |
. . . . . . . . . . . . 13
⊢ · =
(.r‘𝑅) |
13 | 4, 12 | mgpplusgg 12929 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ V → · =
(+g‘(mulGrp‘𝑅))) |
14 | 13 | oveqd 5882 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ V → (𝑥 · 𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦)) |
15 | 13 | oveqd 5882 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ V → (𝑦 · 𝑥) = (𝑦(+g‘(mulGrp‘𝑅))𝑥)) |
16 | 14, 15 | eqeq12d 2190 |
. . . . . . . . . 10
⊢ (𝑅 ∈ V → ((𝑥 · 𝑦) = (𝑦 · 𝑥) ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))) |
17 | 11, 16 | raleqbidv 2682 |
. . . . . . . . 9
⊢ (𝑅 ∈ V → (∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥) ↔ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))) |
18 | 11, 17 | raleqbidv 2682 |
. . . . . . . 8
⊢ (𝑅 ∈ V → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))) |
19 | 18 | anbi2d 464 |
. . . . . . 7
⊢ (𝑅 ∈ V →
(((mulGrp‘𝑅) ∈
Mnd ∧ ∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)) ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈
(Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥)))) |
20 | 9, 19 | bitr4id 199 |
. . . . . 6
⊢ (𝑅 ∈ V →
((mulGrp‘𝑅) ∈
CMnd ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))) |
21 | 20 | baibd 923 |
. . . . 5
⊢ ((𝑅 ∈ V ∧
(mulGrp‘𝑅) ∈
Mnd) → ((mulGrp‘𝑅) ∈ CMnd ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥))) |
22 | 6, 21 | sylan2 286 |
. . . 4
⊢ ((𝑅 ∈ V ∧ 𝑅 ∈ Ring) →
((mulGrp‘𝑅) ∈
CMnd ↔ ∀𝑥
∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥))) |
23 | 22 | pm5.32da 452 |
. . 3
⊢ (𝑅 ∈ V → ((𝑅 ∈ Ring ∧
(mulGrp‘𝑅) ∈
CMnd) ↔ (𝑅 ∈ Ring
∧ ∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))) |
24 | 5, 23 | bitrid 192 |
. 2
⊢ (𝑅 ∈ V → (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))) |
25 | 1, 3, 24 | pm5.21nii 704 |
1
⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥))) |