Proof of Theorem iscrng2
| Step | Hyp | Ref
 | Expression | 
| 1 |   | elex 2774 | 
. 2
⊢ (𝑅 ∈ CRing → 𝑅 ∈ V) | 
| 2 |   | elex 2774 | 
. . 3
⊢ (𝑅 ∈ Ring → 𝑅 ∈ V) | 
| 3 | 2 | adantr 276 | 
. 2
⊢ ((𝑅 ∈ Ring ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)) → 𝑅 ∈ V) | 
| 4 |   | eqid 2196 | 
. . . 4
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) | 
| 5 | 4 | iscrng 13559 | 
. . 3
⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧
(mulGrp‘𝑅) ∈
CMnd)) | 
| 6 | 4 | ringmgp 13558 | 
. . . . 5
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) | 
| 7 |   | eqid 2196 | 
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | 
| 8 |   | eqid 2196 | 
. . . . . . . 8
⊢
(+g‘(mulGrp‘𝑅)) =
(+g‘(mulGrp‘𝑅)) | 
| 9 | 7, 8 | iscmn 13423 | 
. . . . . . 7
⊢
((mulGrp‘𝑅)
∈ CMnd ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈
(Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))) | 
| 10 |   | ringcl.b | 
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑅) | 
| 11 | 4, 10 | mgpbasg 13482 | 
. . . . . . . . 9
⊢ (𝑅 ∈ V → 𝐵 =
(Base‘(mulGrp‘𝑅))) | 
| 12 |   | ringcl.t | 
. . . . . . . . . . . . 13
⊢  · =
(.r‘𝑅) | 
| 13 | 4, 12 | mgpplusgg 13480 | 
. . . . . . . . . . . 12
⊢ (𝑅 ∈ V → · =
(+g‘(mulGrp‘𝑅))) | 
| 14 | 13 | oveqd 5939 | 
. . . . . . . . . . 11
⊢ (𝑅 ∈ V → (𝑥 · 𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦)) | 
| 15 | 13 | oveqd 5939 | 
. . . . . . . . . . 11
⊢ (𝑅 ∈ V → (𝑦 · 𝑥) = (𝑦(+g‘(mulGrp‘𝑅))𝑥)) | 
| 16 | 14, 15 | eqeq12d 2211 | 
. . . . . . . . . 10
⊢ (𝑅 ∈ V → ((𝑥 · 𝑦) = (𝑦 · 𝑥) ↔ (𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))) | 
| 17 | 11, 16 | raleqbidv 2709 | 
. . . . . . . . 9
⊢ (𝑅 ∈ V → (∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥) ↔ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))) | 
| 18 | 11, 17 | raleqbidv 2709 | 
. . . . . . . 8
⊢ (𝑅 ∈ V → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥))) | 
| 19 | 18 | anbi2d 464 | 
. . . . . . 7
⊢ (𝑅 ∈ V →
(((mulGrp‘𝑅) ∈
Mnd ∧ ∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)) ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈
(Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝑥(+g‘(mulGrp‘𝑅))𝑦) = (𝑦(+g‘(mulGrp‘𝑅))𝑥)))) | 
| 20 | 9, 19 | bitr4id 199 | 
. . . . . 6
⊢ (𝑅 ∈ V →
((mulGrp‘𝑅) ∈
CMnd ↔ ((mulGrp‘𝑅) ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))) | 
| 21 | 20 | baibd 924 | 
. . . . 5
⊢ ((𝑅 ∈ V ∧
(mulGrp‘𝑅) ∈
Mnd) → ((mulGrp‘𝑅) ∈ CMnd ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥))) | 
| 22 | 6, 21 | sylan2 286 | 
. . . 4
⊢ ((𝑅 ∈ V ∧ 𝑅 ∈ Ring) →
((mulGrp‘𝑅) ∈
CMnd ↔ ∀𝑥
∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥))) | 
| 23 | 22 | pm5.32da 452 | 
. . 3
⊢ (𝑅 ∈ V → ((𝑅 ∈ Ring ∧
(mulGrp‘𝑅) ∈
CMnd) ↔ (𝑅 ∈ Ring
∧ ∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))) | 
| 24 | 5, 23 | bitrid 192 | 
. 2
⊢ (𝑅 ∈ V → (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))) | 
| 25 | 1, 3, 24 | pm5.21nii 705 | 
1
⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥))) |