ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg3 GIF version

Theorem issubrg3 13803
Description: A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
issubrg3.m 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
issubrg3 (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀))))

Proof of Theorem issubrg3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2196 . . . 4 (1r𝑅) = (1r𝑅)
3 eqid 2196 . . . 4 (.r𝑅) = (.r𝑅)
41, 2, 3issubrg2 13797 . . 3 (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)))
5 3anass 984 . . 3 ((𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ ((1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)))
64, 5bitrdi 196 . 2 (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ ((1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆))))
71subgss 13304 . . . 4 (𝑆 ∈ (SubGrp‘𝑅) → 𝑆 ⊆ (Base‘𝑅))
8 issubrg3.m . . . . . . . . 9 𝑀 = (mulGrp‘𝑅)
98ringmgp 13558 . . . . . . . 8 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
10 eqid 2196 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
11 eqid 2196 . . . . . . . . 9 (0g𝑀) = (0g𝑀)
12 eqid 2196 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
1310, 11, 12issubm 13104 . . . . . . . 8 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
149, 13syl 14 . . . . . . 7 (𝑅 ∈ Ring → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
158, 1mgpbasg 13482 . . . . . . . . 9 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀))
1615sseq2d 3213 . . . . . . . 8 (𝑅 ∈ Ring → (𝑆 ⊆ (Base‘𝑅) ↔ 𝑆 ⊆ (Base‘𝑀)))
178, 2ringidvalg 13517 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) = (0g𝑀))
1817eleq1d 2265 . . . . . . . 8 (𝑅 ∈ Ring → ((1r𝑅) ∈ 𝑆 ↔ (0g𝑀) ∈ 𝑆))
198, 3mgpplusgg 13480 . . . . . . . . . . 11 (𝑅 ∈ Ring → (.r𝑅) = (+g𝑀))
2019oveqd 5939 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝑥(.r𝑅)𝑦) = (𝑥(+g𝑀)𝑦))
2120eleq1d 2265 . . . . . . . . 9 (𝑅 ∈ Ring → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑆))
22212ralbidv 2521 . . . . . . . 8 (𝑅 ∈ Ring → (∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
2316, 18, 223anbi123d 1323 . . . . . . 7 (𝑅 ∈ Ring → ((𝑆 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
2414, 23bitr4d 191 . . . . . 6 (𝑅 ∈ Ring → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)))
25 3anass 984 . . . . . 6 ((𝑆 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ (Base‘𝑅) ∧ ((1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)))
2624, 25bitrdi 196 . . . . 5 (𝑅 ∈ Ring → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑅) ∧ ((1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆))))
2726baibd 924 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆 ⊆ (Base‘𝑅)) → (𝑆 ∈ (SubMnd‘𝑀) ↔ ((1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)))
287, 27sylan2 286 . . 3 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (SubGrp‘𝑅)) → (𝑆 ∈ (SubMnd‘𝑀) ↔ ((1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)))
2928pm5.32da 452 . 2 (𝑅 ∈ Ring → ((𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ ((1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆))))
306, 29bitr4d 191 1 (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wral 2475  wss 3157  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  .rcmulr 12756  0gc0g 12927  Mndcmnd 13057  SubMndcsubmnd 13090  SubGrpcsubg 13297  mulGrpcmgp 13476  1rcur 13515  Ringcrg 13552  SubRingcsubrg 13773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-submnd 13092  df-subg 13300  df-mgp 13477  df-ur 13516  df-ring 13554  df-subrg 13775
This theorem is referenced by:  rhmeql  13806  rhmima  13807
  Copyright terms: Public domain W3C validator