Step | Hyp | Ref
| Expression |
1 | | eqid 2177 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝑅) |
2 | | eqid 2177 |
. . . 4
⊢
(1r‘𝑅) = (1r‘𝑅) |
3 | | eqid 2177 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
4 | 1, 2, 3 | issubrg2 13368 |
. . 3
⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ (1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) |
5 | | 3anass 982 |
. . 3
⊢ ((𝑆 ∈ (SubGrp‘𝑅) ∧
(1r‘𝑅)
∈ 𝑆 ∧
∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) |
6 | 4, 5 | bitrdi 196 |
. 2
⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆)))) |
7 | 1 | subgss 13040 |
. . . 4
⊢ (𝑆 ∈ (SubGrp‘𝑅) → 𝑆 ⊆ (Base‘𝑅)) |
8 | | issubrg3.m |
. . . . . . . . 9
⊢ 𝑀 = (mulGrp‘𝑅) |
9 | 8 | ringmgp 13191 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
10 | | eqid 2177 |
. . . . . . . . 9
⊢
(Base‘𝑀) =
(Base‘𝑀) |
11 | | eqid 2177 |
. . . . . . . . 9
⊢
(0g‘𝑀) = (0g‘𝑀) |
12 | | eqid 2177 |
. . . . . . . . 9
⊢
(+g‘𝑀) = (+g‘𝑀) |
13 | 10, 11, 12 | issubm 12869 |
. . . . . . . 8
⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
14 | 9, 13 | syl 14 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
15 | 8, 1 | mgpbasg 13142 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) =
(Base‘𝑀)) |
16 | 15 | sseq2d 3187 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → (𝑆 ⊆ (Base‘𝑅) ↔ 𝑆 ⊆ (Base‘𝑀))) |
17 | 8, 2 | ringidvalg 13150 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(1r‘𝑅) =
(0g‘𝑀)) |
18 | 17 | eleq1d 2246 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
((1r‘𝑅)
∈ 𝑆 ↔
(0g‘𝑀)
∈ 𝑆)) |
19 | 8, 3 | mgpplusgg 13140 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring →
(.r‘𝑅) =
(+g‘𝑀)) |
20 | 19 | oveqd 5895 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → (𝑥(.r‘𝑅)𝑦) = (𝑥(+g‘𝑀)𝑦)) |
21 | 20 | eleq1d 2246 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → ((𝑥(.r‘𝑅)𝑦) ∈ 𝑆 ↔ (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) |
22 | 21 | 2ralbidv 2501 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) |
23 | 16, 18, 22 | 3anbi123d 1312 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → ((𝑆 ⊆ (Base‘𝑅) ∧
(1r‘𝑅)
∈ 𝑆 ∧
∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
24 | 14, 23 | bitr4d 191 |
. . . . . 6
⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) |
25 | | 3anass 982 |
. . . . . 6
⊢ ((𝑆 ⊆ (Base‘𝑅) ∧
(1r‘𝑅)
∈ 𝑆 ∧
∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ (Base‘𝑅) ∧ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) |
26 | 24, 25 | bitrdi 196 |
. . . . 5
⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑅) ∧ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆)))) |
27 | 26 | baibd 923 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ (Base‘𝑅)) → (𝑆 ∈ (SubMnd‘𝑀) ↔ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) |
28 | 7, 27 | sylan2 286 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (SubGrp‘𝑅)) → (𝑆 ∈ (SubMnd‘𝑀) ↔ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆))) |
29 | 28 | pm5.32da 452 |
. 2
⊢ (𝑅 ∈ Ring → ((𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ ((1r‘𝑅) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(.r‘𝑅)𝑦) ∈ 𝑆)))) |
30 | 6, 29 | bitr4d 191 |
1
⊢ (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)))) |