ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrg3 GIF version

Theorem issubrg3 14124
Description: A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypothesis
Ref Expression
issubrg3.m 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
issubrg3 (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀))))

Proof of Theorem issubrg3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . . . 4 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2207 . . . 4 (1r𝑅) = (1r𝑅)
3 eqid 2207 . . . 4 (.r𝑅) = (.r𝑅)
41, 2, 3issubrg2 14118 . . 3 (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)))
5 3anass 985 . . 3 ((𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ ((1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)))
64, 5bitrdi 196 . 2 (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ ((1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆))))
71subgss 13625 . . . 4 (𝑆 ∈ (SubGrp‘𝑅) → 𝑆 ⊆ (Base‘𝑅))
8 issubrg3.m . . . . . . . . 9 𝑀 = (mulGrp‘𝑅)
98ringmgp 13879 . . . . . . . 8 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
10 eqid 2207 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
11 eqid 2207 . . . . . . . . 9 (0g𝑀) = (0g𝑀)
12 eqid 2207 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
1310, 11, 12issubm 13419 . . . . . . . 8 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
149, 13syl 14 . . . . . . 7 (𝑅 ∈ Ring → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
158, 1mgpbasg 13803 . . . . . . . . 9 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑀))
1615sseq2d 3231 . . . . . . . 8 (𝑅 ∈ Ring → (𝑆 ⊆ (Base‘𝑅) ↔ 𝑆 ⊆ (Base‘𝑀)))
178, 2ringidvalg 13838 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) = (0g𝑀))
1817eleq1d 2276 . . . . . . . 8 (𝑅 ∈ Ring → ((1r𝑅) ∈ 𝑆 ↔ (0g𝑀) ∈ 𝑆))
198, 3mgpplusgg 13801 . . . . . . . . . . 11 (𝑅 ∈ Ring → (.r𝑅) = (+g𝑀))
2019oveqd 5984 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝑥(.r𝑅)𝑦) = (𝑥(+g𝑀)𝑦))
2120eleq1d 2276 . . . . . . . . 9 (𝑅 ∈ Ring → ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑆))
22212ralbidv 2532 . . . . . . . 8 (𝑅 ∈ Ring → (∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
2316, 18, 223anbi123d 1325 . . . . . . 7 (𝑅 ∈ Ring → ((𝑆 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
2414, 23bitr4d 191 . . . . . 6 (𝑅 ∈ Ring → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)))
25 3anass 985 . . . . . 6 ((𝑆 ⊆ (Base‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ (Base‘𝑅) ∧ ((1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)))
2624, 25bitrdi 196 . . . . 5 (𝑅 ∈ Ring → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑅) ∧ ((1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆))))
2726baibd 925 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆 ⊆ (Base‘𝑅)) → (𝑆 ∈ (SubMnd‘𝑀) ↔ ((1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)))
287, 27sylan2 286 . . 3 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (SubGrp‘𝑅)) → (𝑆 ∈ (SubMnd‘𝑀) ↔ ((1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆)))
2928pm5.32da 452 . 2 (𝑅 ∈ Ring → ((𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀)) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ ((1r𝑅) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑆))))
306, 29bitr4d 191 1 (𝑅 ∈ Ring → (𝑆 ∈ (SubRing‘𝑅) ↔ (𝑆 ∈ (SubGrp‘𝑅) ∧ 𝑆 ∈ (SubMnd‘𝑀))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2178  wral 2486  wss 3174  cfv 5290  (class class class)co 5967  Basecbs 12947  +gcplusg 13024  .rcmulr 13025  0gc0g 13203  Mndcmnd 13363  SubMndcsubmnd 13405  SubGrpcsubg 13618  mulGrpcmgp 13797  1rcur 13836  Ringcrg 13873  SubRingcsubrg 14094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-submnd 13407  df-subg 13621  df-mgp 13798  df-ur 13837  df-ring 13875  df-subrg 14096
This theorem is referenced by:  rhmeql  14127  rhmima  14128
  Copyright terms: Public domain W3C validator