ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz GIF version

Theorem eluz 8964
Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.)
Assertion
Ref Expression
eluz ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))

Proof of Theorem eluz
StepHypRef Expression
1 eluz1 8955 . 2 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
21baibd 868 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1436   class class class wbr 3820  cfv 4981  cle 7467  cz 8683  cuz 8951
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-cnex 7380  ax-resscn 7381
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2617  df-sbc 2830  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-br 3821  df-opab 3875  df-mpt 3876  df-id 4094  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-iota 4946  df-fun 4983  df-fv 4989  df-ov 5616  df-neg 7600  df-z 8684  df-uz 8952
This theorem is referenced by:  uzneg  8969  uztric  8972  uzm1  8981  eluzdc  9029  fzn  9388  fzsplit2  9396  fznn  9433  uzsplit  9436  elfz2nn0  9456  fzouzsplit  9518  exfzdc  9579  fzfig  9765  faclbnd  10045  iseqcoll  10143  cvg1nlemcau  10312  cvg1nlemres  10313  isummolem2a  10660  zsupcllemstep  10816  zsupcl  10818  infssuzex  10820  uzdcinzz  11136
  Copyright terms: Public domain W3C validator