ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz GIF version

Theorem eluz 9633
Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.)
Assertion
Ref Expression
eluz ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))

Proof of Theorem eluz
StepHypRef Expression
1 eluz1 9624 . 2 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
21baibd 924 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2167   class class class wbr 4034  cfv 5259  cle 8081  cz 9345  cuz 9620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-cnex 7989  ax-resscn 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-neg 8219  df-z 9346  df-uz 9621
This theorem is referenced by:  uzneg  9639  uztric  9642  uzm1  9651  eluzdc  9703  fzn  10136  fzsplit2  10144  fznn  10183  uzsplit  10186  elfz2nn0  10206  fzouzsplit  10274  exfzdc  10335  zsupcllemstep  10338  zsupcl  10340  infssuzex  10342  fzfig  10541  faclbnd  10852  seq3coll  10953  cvg1nlemcau  11168  cvg1nlemres  11169  summodclem2a  11565  fsum0diaglem  11624  mertenslemi1  11719  prodmodclem2a  11760  pcpremul  12489  pcdvdsb  12516  pcadd  12536  pcfac  12546  pcbc  12547  prmunb  12558  gsumfzval  13095  uzdcinzz  15552
  Copyright terms: Public domain W3C validator