Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluz | GIF version |
Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.) |
Ref | Expression |
---|---|
eluz | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz1 9491 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ≥‘𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁))) | |
2 | 1 | baibd 918 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 class class class wbr 3989 ‘cfv 5198 ≤ cle 7955 ℤcz 9212 ℤ≥cuz 9487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-neg 8093 df-z 9213 df-uz 9488 |
This theorem is referenced by: uzneg 9505 uztric 9508 uzm1 9517 eluzdc 9569 fzn 9998 fzsplit2 10006 fznn 10045 uzsplit 10048 elfz2nn0 10068 fzouzsplit 10135 exfzdc 10196 fzfig 10386 faclbnd 10675 seq3coll 10777 cvg1nlemcau 10948 cvg1nlemres 10949 summodclem2a 11344 fsum0diaglem 11403 mertenslemi1 11498 prodmodclem2a 11539 zsupcllemstep 11900 zsupcl 11902 infssuzex 11904 pcpremul 12247 pcdvdsb 12273 pcadd 12293 pcfac 12302 pcbc 12303 prmunb 12314 uzdcinzz 13833 |
Copyright terms: Public domain | W3C validator |