ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz GIF version

Theorem eluz 9500
Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.)
Assertion
Ref Expression
eluz ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))

Proof of Theorem eluz
StepHypRef Expression
1 eluz1 9491 . 2 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
21baibd 918 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2141   class class class wbr 3989  cfv 5198  cle 7955  cz 9212  cuz 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-neg 8093  df-z 9213  df-uz 9488
This theorem is referenced by:  uzneg  9505  uztric  9508  uzm1  9517  eluzdc  9569  fzn  9998  fzsplit2  10006  fznn  10045  uzsplit  10048  elfz2nn0  10068  fzouzsplit  10135  exfzdc  10196  fzfig  10386  faclbnd  10675  seq3coll  10777  cvg1nlemcau  10948  cvg1nlemres  10949  summodclem2a  11344  fsum0diaglem  11403  mertenslemi1  11498  prodmodclem2a  11539  zsupcllemstep  11900  zsupcl  11902  infssuzex  11904  pcpremul  12247  pcdvdsb  12273  pcadd  12293  pcfac  12302  pcbc  12303  prmunb  12314  uzdcinzz  13833
  Copyright terms: Public domain W3C validator