ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz GIF version

Theorem eluz 9541
Description: Membership in an upper set of integers. (Contributed by NM, 2-Oct-2005.)
Assertion
Ref Expression
eluz ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))

Proof of Theorem eluz
StepHypRef Expression
1 eluz1 9532 . 2 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ𝑀) ↔ (𝑁 ∈ ℤ ∧ 𝑀𝑁)))
21baibd 923 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2148   class class class wbr 4004  cfv 5217  cle 7993  cz 9253  cuz 9528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-cnex 7902  ax-resscn 7903
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-ov 5878  df-neg 8131  df-z 9254  df-uz 9529
This theorem is referenced by:  uzneg  9546  uztric  9549  uzm1  9558  eluzdc  9610  fzn  10042  fzsplit2  10050  fznn  10089  uzsplit  10092  elfz2nn0  10112  fzouzsplit  10179  exfzdc  10240  fzfig  10430  faclbnd  10721  seq3coll  10822  cvg1nlemcau  10993  cvg1nlemres  10994  summodclem2a  11389  fsum0diaglem  11448  mertenslemi1  11543  prodmodclem2a  11584  zsupcllemstep  11946  zsupcl  11948  infssuzex  11950  pcpremul  12293  pcdvdsb  12319  pcadd  12339  pcfac  12348  pcbc  12349  prmunb  12360  uzdcinzz  14553
  Copyright terms: Public domain W3C validator