ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgid GIF version

Theorem eqgid 13296
Description: The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
eqgid.3 0 = (0g𝐺)
Assertion
Ref Expression
eqgid (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] = 𝑌)

Proof of Theorem eqgid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subgrcl 13249 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2 eqger.r . . . . . 6 = (𝐺 ~QG 𝑌)
32releqgg 13290 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌 ∈ (SubGrp‘𝐺)) → Rel )
41, 3mpancom 422 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → Rel )
5 relelec 6629 . . . 4 (Rel → (𝑥 ∈ [ 0 ] 0 𝑥))
64, 5syl 14 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ [ 0 ] 0 𝑥))
71adantr 276 . . . . . . . . 9 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
8 eqgid.3 . . . . . . . . . 10 0 = (0g𝐺)
9 eqid 2193 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
108, 9grpinvid 13132 . . . . . . . . 9 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
117, 10syl 14 . . . . . . . 8 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((invg𝐺)‘ 0 ) = 0 )
1211oveq1d 5933 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (((invg𝐺)‘ 0 )(+g𝐺)𝑥) = ( 0 (+g𝐺)𝑥))
13 eqger.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
14 eqid 2193 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
1513, 14, 8grplid 13103 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ( 0 (+g𝐺)𝑥) = 𝑥)
161, 15sylan 283 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ( 0 (+g𝐺)𝑥) = 𝑥)
1712, 16eqtrd 2226 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (((invg𝐺)‘ 0 )(+g𝐺)𝑥) = 𝑥)
1817eleq1d 2262 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌𝑥𝑌))
1918pm5.32da 452 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → ((𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌) ↔ (𝑥𝑋𝑥𝑌)))
2013subgss 13244 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
2113, 8grpidcl 13101 . . . . . 6 (𝐺 ∈ Grp → 0𝑋)
221, 21syl 14 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 0𝑋)
2313, 9, 14, 2eqgval 13293 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → ( 0 𝑥 ↔ ( 0𝑋𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
24 3anass 984 . . . . . . 7 (( 0𝑋𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌) ↔ ( 0𝑋 ∧ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
2523, 24bitrdi 196 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → ( 0 𝑥 ↔ ( 0𝑋 ∧ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌))))
2625baibd 924 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑌𝑋) ∧ 0𝑋) → ( 0 𝑥 ↔ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
271, 20, 22, 26syl21anc 1248 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → ( 0 𝑥 ↔ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
2820sseld 3178 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑌𝑥𝑋))
2928pm4.71rd 394 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑌 ↔ (𝑥𝑋𝑥𝑌)))
3019, 27, 293bitr4d 220 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → ( 0 𝑥𝑥𝑌))
316, 30bitrd 188 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ [ 0 ] 𝑥𝑌))
3231eqrdv 2191 1 (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] = 𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wss 3153   class class class wbr 4029  Rel wrel 4664  cfv 5254  (class class class)co 5918  [cec 6585  Basecbs 12618  +gcplusg 12695  0gc0g 12867  Grpcgrp 13072  invgcminusg 13073  SubGrpcsubg 13237   ~QG cqg 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-ec 6589  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240  df-eqg 13242
This theorem is referenced by:  eqg0el  13299
  Copyright terms: Public domain W3C validator