ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgid GIF version

Theorem eqgid 13356
Description: The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
eqgid.3 0 = (0g𝐺)
Assertion
Ref Expression
eqgid (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] = 𝑌)

Proof of Theorem eqgid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subgrcl 13309 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2 eqger.r . . . . . 6 = (𝐺 ~QG 𝑌)
32releqgg 13350 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌 ∈ (SubGrp‘𝐺)) → Rel )
41, 3mpancom 422 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → Rel )
5 relelec 6634 . . . 4 (Rel → (𝑥 ∈ [ 0 ] 0 𝑥))
64, 5syl 14 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ [ 0 ] 0 𝑥))
71adantr 276 . . . . . . . . 9 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
8 eqgid.3 . . . . . . . . . 10 0 = (0g𝐺)
9 eqid 2196 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
108, 9grpinvid 13192 . . . . . . . . 9 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
117, 10syl 14 . . . . . . . 8 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((invg𝐺)‘ 0 ) = 0 )
1211oveq1d 5937 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (((invg𝐺)‘ 0 )(+g𝐺)𝑥) = ( 0 (+g𝐺)𝑥))
13 eqger.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
14 eqid 2196 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
1513, 14, 8grplid 13163 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ( 0 (+g𝐺)𝑥) = 𝑥)
161, 15sylan 283 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ( 0 (+g𝐺)𝑥) = 𝑥)
1712, 16eqtrd 2229 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (((invg𝐺)‘ 0 )(+g𝐺)𝑥) = 𝑥)
1817eleq1d 2265 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌𝑥𝑌))
1918pm5.32da 452 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → ((𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌) ↔ (𝑥𝑋𝑥𝑌)))
2013subgss 13304 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
2113, 8grpidcl 13161 . . . . . 6 (𝐺 ∈ Grp → 0𝑋)
221, 21syl 14 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 0𝑋)
2313, 9, 14, 2eqgval 13353 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → ( 0 𝑥 ↔ ( 0𝑋𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
24 3anass 984 . . . . . . 7 (( 0𝑋𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌) ↔ ( 0𝑋 ∧ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
2523, 24bitrdi 196 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → ( 0 𝑥 ↔ ( 0𝑋 ∧ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌))))
2625baibd 924 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑌𝑋) ∧ 0𝑋) → ( 0 𝑥 ↔ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
271, 20, 22, 26syl21anc 1248 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → ( 0 𝑥 ↔ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
2820sseld 3182 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑌𝑥𝑋))
2928pm4.71rd 394 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑌 ↔ (𝑥𝑋𝑥𝑌)))
3019, 27, 293bitr4d 220 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → ( 0 𝑥𝑥𝑌))
316, 30bitrd 188 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ [ 0 ] 𝑥𝑌))
3231eqrdv 2194 1 (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] = 𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wss 3157   class class class wbr 4033  Rel wrel 4668  cfv 5258  (class class class)co 5922  [cec 6590  Basecbs 12678  +gcplusg 12755  0gc0g 12927  Grpcgrp 13132  invgcminusg 13133  SubGrpcsubg 13297   ~QG cqg 13299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-ec 6594  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-subg 13300  df-eqg 13302
This theorem is referenced by:  eqg0el  13359
  Copyright terms: Public domain W3C validator