ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgid GIF version

Theorem eqgid 13647
Description: The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
eqgid.3 0 = (0g𝐺)
Assertion
Ref Expression
eqgid (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] = 𝑌)

Proof of Theorem eqgid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subgrcl 13600 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2 eqger.r . . . . . 6 = (𝐺 ~QG 𝑌)
32releqgg 13641 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌 ∈ (SubGrp‘𝐺)) → Rel )
41, 3mpancom 422 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → Rel )
5 relelec 6680 . . . 4 (Rel → (𝑥 ∈ [ 0 ] 0 𝑥))
64, 5syl 14 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ [ 0 ] 0 𝑥))
71adantr 276 . . . . . . . . 9 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
8 eqgid.3 . . . . . . . . . 10 0 = (0g𝐺)
9 eqid 2206 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
108, 9grpinvid 13477 . . . . . . . . 9 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
117, 10syl 14 . . . . . . . 8 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((invg𝐺)‘ 0 ) = 0 )
1211oveq1d 5977 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (((invg𝐺)‘ 0 )(+g𝐺)𝑥) = ( 0 (+g𝐺)𝑥))
13 eqger.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
14 eqid 2206 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
1513, 14, 8grplid 13448 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ( 0 (+g𝐺)𝑥) = 𝑥)
161, 15sylan 283 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ( 0 (+g𝐺)𝑥) = 𝑥)
1712, 16eqtrd 2239 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (((invg𝐺)‘ 0 )(+g𝐺)𝑥) = 𝑥)
1817eleq1d 2275 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌𝑥𝑌))
1918pm5.32da 452 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → ((𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌) ↔ (𝑥𝑋𝑥𝑌)))
2013subgss 13595 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
2113, 8grpidcl 13446 . . . . . 6 (𝐺 ∈ Grp → 0𝑋)
221, 21syl 14 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 0𝑋)
2313, 9, 14, 2eqgval 13644 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → ( 0 𝑥 ↔ ( 0𝑋𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
24 3anass 985 . . . . . . 7 (( 0𝑋𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌) ↔ ( 0𝑋 ∧ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
2523, 24bitrdi 196 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → ( 0 𝑥 ↔ ( 0𝑋 ∧ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌))))
2625baibd 925 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑌𝑋) ∧ 0𝑋) → ( 0 𝑥 ↔ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
271, 20, 22, 26syl21anc 1249 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → ( 0 𝑥 ↔ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
2820sseld 3196 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑌𝑥𝑋))
2928pm4.71rd 394 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑌 ↔ (𝑥𝑋𝑥𝑌)))
3019, 27, 293bitr4d 220 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → ( 0 𝑥𝑥𝑌))
316, 30bitrd 188 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ [ 0 ] 𝑥𝑌))
3231eqrdv 2204 1 (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] = 𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wss 3170   class class class wbr 4054  Rel wrel 4693  cfv 5285  (class class class)co 5962  [cec 6636  Basecbs 12917  +gcplusg 12994  0gc0g 13173  Grpcgrp 13417  invgcminusg 13418  SubGrpcsubg 13588   ~QG cqg 13590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-ec 6640  df-inn 9067  df-2 9125  df-ndx 12920  df-slot 12921  df-base 12923  df-plusg 13007  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-grp 13420  df-minusg 13421  df-subg 13591  df-eqg 13593
This theorem is referenced by:  eqg0el  13650
  Copyright terms: Public domain W3C validator