| Step | Hyp | Ref
 | Expression | 
| 1 |   | subgrcl 13309 | 
. . . . 5
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | 
| 2 |   | eqger.r | 
. . . . . 6
⊢  ∼ =
(𝐺 ~QG
𝑌) | 
| 3 | 2 | releqgg 13350 | 
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ (SubGrp‘𝐺)) → Rel ∼ ) | 
| 4 | 1, 3 | mpancom 422 | 
. . . 4
⊢ (𝑌 ∈ (SubGrp‘𝐺) → Rel ∼ ) | 
| 5 |   | relelec 6634 | 
. . . 4
⊢ (Rel
∼
→ (𝑥 ∈ [ 0 ] ∼ ↔
0 ∼ 𝑥)) | 
| 6 | 4, 5 | syl 14 | 
. . 3
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ [ 0 ] ∼ ↔ 0 ∼ 𝑥)) | 
| 7 | 1 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → 𝐺 ∈ Grp) | 
| 8 |   | eqgid.3 | 
. . . . . . . . . 10
⊢  0 =
(0g‘𝐺) | 
| 9 |   | eqid 2196 | 
. . . . . . . . . 10
⊢
(invg‘𝐺) = (invg‘𝐺) | 
| 10 | 8, 9 | grpinvid 13192 | 
. . . . . . . . 9
⊢ (𝐺 ∈ Grp →
((invg‘𝐺)‘ 0 ) = 0 ) | 
| 11 | 7, 10 | syl 14 | 
. . . . . . . 8
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → ((invg‘𝐺)‘ 0 ) = 0 ) | 
| 12 | 11 | oveq1d 5937 | 
. . . . . . 7
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → (((invg‘𝐺)‘ 0
)(+g‘𝐺)𝑥) = ( 0 (+g‘𝐺)𝑥)) | 
| 13 |   | eqger.x | 
. . . . . . . . 9
⊢ 𝑋 = (Base‘𝐺) | 
| 14 |   | eqid 2196 | 
. . . . . . . . 9
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 15 | 13, 14, 8 | grplid 13163 | 
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ( 0 (+g‘𝐺)𝑥) = 𝑥) | 
| 16 | 1, 15 | sylan 283 | 
. . . . . . 7
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → ( 0 (+g‘𝐺)𝑥) = 𝑥) | 
| 17 | 12, 16 | eqtrd 2229 | 
. . . . . 6
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → (((invg‘𝐺)‘ 0
)(+g‘𝐺)𝑥) = 𝑥) | 
| 18 | 17 | eleq1d 2265 | 
. . . . 5
⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ 𝑋) → ((((invg‘𝐺)‘ 0
)(+g‘𝐺)𝑥) ∈ 𝑌 ↔ 𝑥 ∈ 𝑌)) | 
| 19 | 18 | pm5.32da 452 | 
. . . 4
⊢ (𝑌 ∈ (SubGrp‘𝐺) → ((𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘ 0
)(+g‘𝐺)𝑥) ∈ 𝑌) ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑌))) | 
| 20 | 13 | subgss 13304 | 
. . . . 5
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝑌 ⊆ 𝑋) | 
| 21 | 13, 8 | grpidcl 13161 | 
. . . . . 6
⊢ (𝐺 ∈ Grp → 0 ∈ 𝑋) | 
| 22 | 1, 21 | syl 14 | 
. . . . 5
⊢ (𝑌 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑋) | 
| 23 | 13, 9, 14, 2 | eqgval 13353 | 
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → ( 0 ∼ 𝑥 ↔ ( 0 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘ 0
)(+g‘𝐺)𝑥) ∈ 𝑌))) | 
| 24 |   | 3anass 984 | 
. . . . . . 7
⊢ (( 0 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘ 0
)(+g‘𝐺)𝑥) ∈ 𝑌) ↔ ( 0 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘ 0
)(+g‘𝐺)𝑥) ∈ 𝑌))) | 
| 25 | 23, 24 | bitrdi 196 | 
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) → ( 0 ∼ 𝑥 ↔ ( 0 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘ 0
)(+g‘𝐺)𝑥) ∈ 𝑌)))) | 
| 26 | 25 | baibd 924 | 
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋) ∧ 0 ∈ 𝑋) → ( 0 ∼ 𝑥 ↔ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘ 0
)(+g‘𝐺)𝑥) ∈ 𝑌))) | 
| 27 | 1, 20, 22, 26 | syl21anc 1248 | 
. . . 4
⊢ (𝑌 ∈ (SubGrp‘𝐺) → ( 0 ∼ 𝑥 ↔ (𝑥 ∈ 𝑋 ∧ (((invg‘𝐺)‘ 0
)(+g‘𝐺)𝑥) ∈ 𝑌))) | 
| 28 | 20 | sseld 3182 | 
. . . . 5
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ 𝑌 → 𝑥 ∈ 𝑋)) | 
| 29 | 28 | pm4.71rd 394 | 
. . . 4
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ 𝑌 ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑌))) | 
| 30 | 19, 27, 29 | 3bitr4d 220 | 
. . 3
⊢ (𝑌 ∈ (SubGrp‘𝐺) → ( 0 ∼ 𝑥 ↔ 𝑥 ∈ 𝑌)) | 
| 31 | 6, 30 | bitrd 188 | 
. 2
⊢ (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ [ 0 ] ∼ ↔ 𝑥 ∈ 𝑌)) | 
| 32 | 31 | eqrdv 2194 | 
1
⊢ (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] ∼ = 𝑌) |