ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgid GIF version

Theorem eqgid 13533
Description: The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x 𝑋 = (Base‘𝐺)
eqger.r = (𝐺 ~QG 𝑌)
eqgid.3 0 = (0g𝐺)
Assertion
Ref Expression
eqgid (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] = 𝑌)

Proof of Theorem eqgid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 subgrcl 13486 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
2 eqger.r . . . . . 6 = (𝐺 ~QG 𝑌)
32releqgg 13527 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌 ∈ (SubGrp‘𝐺)) → Rel )
41, 3mpancom 422 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → Rel )
5 relelec 6661 . . . 4 (Rel → (𝑥 ∈ [ 0 ] 0 𝑥))
64, 5syl 14 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ [ 0 ] 0 𝑥))
71adantr 276 . . . . . . . . 9 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
8 eqgid.3 . . . . . . . . . 10 0 = (0g𝐺)
9 eqid 2204 . . . . . . . . . 10 (invg𝐺) = (invg𝐺)
108, 9grpinvid 13363 . . . . . . . . 9 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
117, 10syl 14 . . . . . . . 8 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((invg𝐺)‘ 0 ) = 0 )
1211oveq1d 5958 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (((invg𝐺)‘ 0 )(+g𝐺)𝑥) = ( 0 (+g𝐺)𝑥))
13 eqger.x . . . . . . . . 9 𝑋 = (Base‘𝐺)
14 eqid 2204 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
1513, 14, 8grplid 13334 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ( 0 (+g𝐺)𝑥) = 𝑥)
161, 15sylan 283 . . . . . . 7 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ( 0 (+g𝐺)𝑥) = 𝑥)
1712, 16eqtrd 2237 . . . . . 6 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → (((invg𝐺)‘ 0 )(+g𝐺)𝑥) = 𝑥)
1817eleq1d 2273 . . . . 5 ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝑥𝑋) → ((((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌𝑥𝑌))
1918pm5.32da 452 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → ((𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌) ↔ (𝑥𝑋𝑥𝑌)))
2013subgss 13481 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
2113, 8grpidcl 13332 . . . . . 6 (𝐺 ∈ Grp → 0𝑋)
221, 21syl 14 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → 0𝑋)
2313, 9, 14, 2eqgval 13530 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → ( 0 𝑥 ↔ ( 0𝑋𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
24 3anass 984 . . . . . . 7 (( 0𝑋𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌) ↔ ( 0𝑋 ∧ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
2523, 24bitrdi 196 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → ( 0 𝑥 ↔ ( 0𝑋 ∧ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌))))
2625baibd 924 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑌𝑋) ∧ 0𝑋) → ( 0 𝑥 ↔ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
271, 20, 22, 26syl21anc 1248 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → ( 0 𝑥 ↔ (𝑥𝑋 ∧ (((invg𝐺)‘ 0 )(+g𝐺)𝑥) ∈ 𝑌)))
2820sseld 3191 . . . . 5 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑌𝑥𝑋))
2928pm4.71rd 394 . . . 4 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥𝑌 ↔ (𝑥𝑋𝑥𝑌)))
3019, 27, 293bitr4d 220 . . 3 (𝑌 ∈ (SubGrp‘𝐺) → ( 0 𝑥𝑥𝑌))
316, 30bitrd 188 . 2 (𝑌 ∈ (SubGrp‘𝐺) → (𝑥 ∈ [ 0 ] 𝑥𝑌))
3231eqrdv 2202 1 (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] = 𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1372  wcel 2175  wss 3165   class class class wbr 4043  Rel wrel 4679  cfv 5270  (class class class)co 5943  [cec 6617  Basecbs 12803  +gcplusg 12880  0gc0g 13059  Grpcgrp 13303  invgcminusg 13304  SubGrpcsubg 13474   ~QG cqg 13476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-ec 6621  df-inn 9036  df-2 9094  df-ndx 12806  df-slot 12807  df-base 12809  df-plusg 12893  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-grp 13306  df-minusg 13307  df-subg 13477  df-eqg 13479
This theorem is referenced by:  eqg0el  13536
  Copyright terms: Public domain W3C validator