ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reopnap GIF version

Theorem reopnap 12949
Description: The real numbers apart from a given real number form an open set. (Contributed by Jim Kingdon, 13-Dec-2023.)
Assertion
Ref Expression
reopnap (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ∈ (topGen‘ran (,)))
Distinct variable group:   𝑤,𝐴

Proof of Theorem reopnap
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elrabi 2865 . . . . 5 (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} → 𝑥 ∈ ℝ)
21a1i 9 . . . 4 (𝐴 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} → 𝑥 ∈ ℝ))
3 elun 3248 . . . . 5 (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐴(,)+∞)))
4 rexr 7923 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
5 elioomnf 9872 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝐴)))
64, 5syl 14 . . . . . . 7 (𝐴 ∈ ℝ → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝐴)))
7 simpl 108 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) → 𝑥 ∈ ℝ)
86, 7syl6bi 162 . . . . . 6 (𝐴 ∈ ℝ → (𝑥 ∈ (-∞(,)𝐴) → 𝑥 ∈ ℝ))
9 elioopnf 9871 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥)))
104, 9syl 14 . . . . . . 7 (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥)))
11 simpl 108 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 𝑥 ∈ ℝ)
1210, 11syl6bi 162 . . . . . 6 (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴(,)+∞) → 𝑥 ∈ ℝ))
138, 12jaod 707 . . . . 5 (𝐴 ∈ ℝ → ((𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐴(,)+∞)) → 𝑥 ∈ ℝ))
143, 13syl5bi 151 . . . 4 (𝐴 ∈ ℝ → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) → 𝑥 ∈ ℝ))
15 reaplt 8463 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 # 𝐴 ↔ (𝑥 < 𝐴𝐴 < 𝑥)))
1615ancoms 266 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝐴 ↔ (𝑥 < 𝐴𝐴 < 𝑥)))
17 breq1 3968 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 # 𝐴𝑥 # 𝐴))
1817elrab 2868 . . . . . . 7 (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ (𝑥 ∈ ℝ ∧ 𝑥 # 𝐴))
19 ibar 299 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 # 𝐴 ↔ (𝑥 ∈ ℝ ∧ 𝑥 # 𝐴)))
2019adantl 275 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝐴 ↔ (𝑥 ∈ ℝ ∧ 𝑥 # 𝐴)))
2118, 20bitr4id 198 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 # 𝐴))
226baibd 909 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝐴) ↔ 𝑥 < 𝐴))
2310baibd 909 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐴(,)+∞) ↔ 𝐴 < 𝑥))
2422, 23orbi12d 783 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐴(,)+∞)) ↔ (𝑥 < 𝐴𝐴 < 𝑥)))
253, 24syl5bb 191 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ↔ (𝑥 < 𝐴𝐴 < 𝑥)))
2616, 21, 253bitr4d 219 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞))))
2726ex 114 . . . 4 (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)))))
282, 14, 27pm5.21ndd 695 . . 3 (𝐴 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞))))
2928eqrdv 2155 . 2 (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} = ((-∞(,)𝐴) ∪ (𝐴(,)+∞)))
30 retop 12935 . . 3 (topGen‘ran (,)) ∈ Top
31 mnfxr 7934 . . . 4 -∞ ∈ ℝ*
32 iooretopg 12939 . . . 4 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞(,)𝐴) ∈ (topGen‘ran (,)))
3331, 4, 32sylancr 411 . . 3 (𝐴 ∈ ℝ → (-∞(,)𝐴) ∈ (topGen‘ran (,)))
34 pnfxr 7930 . . . 4 +∞ ∈ ℝ*
35 iooretopg 12939 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,)+∞) ∈ (topGen‘ran (,)))
364, 34, 35sylancl 410 . . 3 (𝐴 ∈ ℝ → (𝐴(,)+∞) ∈ (topGen‘ran (,)))
37 unopn 12414 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,)) ∧ (𝐴(,)+∞) ∈ (topGen‘ran (,))) → ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ∈ (topGen‘ran (,)))
3830, 33, 36, 37mp3an2i 1324 . 2 (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ∈ (topGen‘ran (,)))
3929, 38eqeltrd 2234 1 (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ∈ (topGen‘ran (,)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  wcel 2128  {crab 2439  cun 3100   class class class wbr 3965  ran crn 4587  cfv 5170  (class class class)co 5824  cr 7731  +∞cpnf 7909  -∞cmnf 7910  *cxr 7911   < clt 7912   # cap 8456  (,)cioo 9792  topGenctg 12377  Topctop 12406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850  ax-arch 7851  ax-caucvg 7852
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-isom 5179  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-frec 6338  df-sup 6928  df-inf 6929  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-2 8892  df-3 8893  df-4 8894  df-n0 9091  df-z 9168  df-uz 9440  df-rp 9561  df-xneg 9679  df-ioo 9796  df-seqfrec 10345  df-exp 10419  df-cj 10742  df-re 10743  df-im 10744  df-rsqrt 10898  df-abs 10899  df-topgen 12383  df-top 12407  df-bases 12452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator