Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reopnap | GIF version |
Description: The real numbers apart from a given real number form an open set. (Contributed by Jim Kingdon, 13-Dec-2023.) |
Ref | Expression |
---|---|
reopnap | ⊢ (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ∈ (topGen‘ran (,))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrabi 2865 | . . . . 5 ⊢ (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} → 𝑥 ∈ ℝ) | |
2 | 1 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} → 𝑥 ∈ ℝ)) |
3 | elun 3248 | . . . . 5 ⊢ (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐴(,)+∞))) | |
4 | rexr 7923 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
5 | elioomnf 9872 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝐴))) | |
6 | 4, 5 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝐴))) |
7 | simpl 108 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) → 𝑥 ∈ ℝ) | |
8 | 6, 7 | syl6bi 162 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ (-∞(,)𝐴) → 𝑥 ∈ ℝ)) |
9 | elioopnf 9871 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥))) | |
10 | 4, 9 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥))) |
11 | simpl 108 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 𝑥 ∈ ℝ) | |
12 | 10, 11 | syl6bi 162 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴(,)+∞) → 𝑥 ∈ ℝ)) |
13 | 8, 12 | jaod 707 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐴(,)+∞)) → 𝑥 ∈ ℝ)) |
14 | 3, 13 | syl5bi 151 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) → 𝑥 ∈ ℝ)) |
15 | reaplt 8463 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 # 𝐴 ↔ (𝑥 < 𝐴 ∨ 𝐴 < 𝑥))) | |
16 | 15 | ancoms 266 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝐴 ↔ (𝑥 < 𝐴 ∨ 𝐴 < 𝑥))) |
17 | breq1 3968 | . . . . . . . 8 ⊢ (𝑤 = 𝑥 → (𝑤 # 𝐴 ↔ 𝑥 # 𝐴)) | |
18 | 17 | elrab 2868 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ (𝑥 ∈ ℝ ∧ 𝑥 # 𝐴)) |
19 | ibar 299 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (𝑥 # 𝐴 ↔ (𝑥 ∈ ℝ ∧ 𝑥 # 𝐴))) | |
20 | 19 | adantl 275 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝐴 ↔ (𝑥 ∈ ℝ ∧ 𝑥 # 𝐴))) |
21 | 18, 20 | bitr4id 198 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 # 𝐴)) |
22 | 6 | baibd 909 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝐴) ↔ 𝑥 < 𝐴)) |
23 | 10 | baibd 909 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐴(,)+∞) ↔ 𝐴 < 𝑥)) |
24 | 22, 23 | orbi12d 783 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐴(,)+∞)) ↔ (𝑥 < 𝐴 ∨ 𝐴 < 𝑥))) |
25 | 3, 24 | syl5bb 191 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ↔ (𝑥 < 𝐴 ∨ 𝐴 < 𝑥))) |
26 | 16, 21, 25 | 3bitr4d 219 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)))) |
27 | 26 | ex 114 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞))))) |
28 | 2, 14, 27 | pm5.21ndd 695 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)))) |
29 | 28 | eqrdv 2155 | . 2 ⊢ (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} = ((-∞(,)𝐴) ∪ (𝐴(,)+∞))) |
30 | retop 12935 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
31 | mnfxr 7934 | . . . 4 ⊢ -∞ ∈ ℝ* | |
32 | iooretopg 12939 | . . . 4 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞(,)𝐴) ∈ (topGen‘ran (,))) | |
33 | 31, 4, 32 | sylancr 411 | . . 3 ⊢ (𝐴 ∈ ℝ → (-∞(,)𝐴) ∈ (topGen‘ran (,))) |
34 | pnfxr 7930 | . . . 4 ⊢ +∞ ∈ ℝ* | |
35 | iooretopg 12939 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,)+∞) ∈ (topGen‘ran (,))) | |
36 | 4, 34, 35 | sylancl 410 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴(,)+∞) ∈ (topGen‘ran (,))) |
37 | unopn 12414 | . . 3 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,)) ∧ (𝐴(,)+∞) ∈ (topGen‘ran (,))) → ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ∈ (topGen‘ran (,))) | |
38 | 30, 33, 36, 37 | mp3an2i 1324 | . 2 ⊢ (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ∈ (topGen‘ran (,))) |
39 | 29, 38 | eqeltrd 2234 | 1 ⊢ (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ∈ (topGen‘ran (,))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 ∈ wcel 2128 {crab 2439 ∪ cun 3100 class class class wbr 3965 ran crn 4587 ‘cfv 5170 (class class class)co 5824 ℝcr 7731 +∞cpnf 7909 -∞cmnf 7910 ℝ*cxr 7911 < clt 7912 # cap 8456 (,)cioo 9792 topGenctg 12377 Topctop 12406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-iinf 4547 ax-cnex 7823 ax-resscn 7824 ax-1cn 7825 ax-1re 7826 ax-icn 7827 ax-addcl 7828 ax-addrcl 7829 ax-mulcl 7830 ax-mulrcl 7831 ax-addcom 7832 ax-mulcom 7833 ax-addass 7834 ax-mulass 7835 ax-distr 7836 ax-i2m1 7837 ax-0lt1 7838 ax-1rid 7839 ax-0id 7840 ax-rnegex 7841 ax-precex 7842 ax-cnre 7843 ax-pre-ltirr 7844 ax-pre-ltwlin 7845 ax-pre-lttrn 7846 ax-pre-apti 7847 ax-pre-ltadd 7848 ax-pre-mulgt0 7849 ax-pre-mulext 7850 ax-arch 7851 ax-caucvg 7852 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4550 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-f 5174 df-f1 5175 df-fo 5176 df-f1o 5177 df-fv 5178 df-isom 5179 df-riota 5780 df-ov 5827 df-oprab 5828 df-mpo 5829 df-1st 6088 df-2nd 6089 df-recs 6252 df-frec 6338 df-sup 6928 df-inf 6929 df-pnf 7914 df-mnf 7915 df-xr 7916 df-ltxr 7917 df-le 7918 df-sub 8048 df-neg 8049 df-reap 8450 df-ap 8457 df-div 8546 df-inn 8834 df-2 8892 df-3 8893 df-4 8894 df-n0 9091 df-z 9168 df-uz 9440 df-rp 9561 df-xneg 9679 df-ioo 9796 df-seqfrec 10345 df-exp 10419 df-cj 10742 df-re 10743 df-im 10744 df-rsqrt 10898 df-abs 10899 df-topgen 12383 df-top 12407 df-bases 12452 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |