| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reopnap | GIF version | ||
| Description: The real numbers apart from a given real number form an open set. (Contributed by Jim Kingdon, 13-Dec-2023.) |
| Ref | Expression |
|---|---|
| reopnap | ⊢ (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ∈ (topGen‘ran (,))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrabi 2956 | . . . . 5 ⊢ (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} → 𝑥 ∈ ℝ) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} → 𝑥 ∈ ℝ)) |
| 3 | elun 3345 | . . . . 5 ⊢ (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐴(,)+∞))) | |
| 4 | rexr 8180 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 5 | elioomnf 10152 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝐴))) | |
| 6 | 4, 5 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝐴))) |
| 7 | simpl 109 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) → 𝑥 ∈ ℝ) | |
| 8 | 6, 7 | biimtrdi 163 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ (-∞(,)𝐴) → 𝑥 ∈ ℝ)) |
| 9 | elioopnf 10151 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥))) | |
| 10 | 4, 9 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥))) |
| 11 | simpl 109 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 𝑥 ∈ ℝ) | |
| 12 | 10, 11 | biimtrdi 163 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴(,)+∞) → 𝑥 ∈ ℝ)) |
| 13 | 8, 12 | jaod 722 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐴(,)+∞)) → 𝑥 ∈ ℝ)) |
| 14 | 3, 13 | biimtrid 152 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) → 𝑥 ∈ ℝ)) |
| 15 | reaplt 8723 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 # 𝐴 ↔ (𝑥 < 𝐴 ∨ 𝐴 < 𝑥))) | |
| 16 | 15 | ancoms 268 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝐴 ↔ (𝑥 < 𝐴 ∨ 𝐴 < 𝑥))) |
| 17 | breq1 4085 | . . . . . . . 8 ⊢ (𝑤 = 𝑥 → (𝑤 # 𝐴 ↔ 𝑥 # 𝐴)) | |
| 18 | 17 | elrab 2959 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ (𝑥 ∈ ℝ ∧ 𝑥 # 𝐴)) |
| 19 | ibar 301 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (𝑥 # 𝐴 ↔ (𝑥 ∈ ℝ ∧ 𝑥 # 𝐴))) | |
| 20 | 19 | adantl 277 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝐴 ↔ (𝑥 ∈ ℝ ∧ 𝑥 # 𝐴))) |
| 21 | 18, 20 | bitr4id 199 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 # 𝐴)) |
| 22 | 6 | baibd 928 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝐴) ↔ 𝑥 < 𝐴)) |
| 23 | 10 | baibd 928 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐴(,)+∞) ↔ 𝐴 < 𝑥)) |
| 24 | 22, 23 | orbi12d 798 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐴(,)+∞)) ↔ (𝑥 < 𝐴 ∨ 𝐴 < 𝑥))) |
| 25 | 3, 24 | bitrid 192 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ↔ (𝑥 < 𝐴 ∨ 𝐴 < 𝑥))) |
| 26 | 16, 21, 25 | 3bitr4d 220 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)))) |
| 27 | 26 | ex 115 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞))))) |
| 28 | 2, 14, 27 | pm5.21ndd 710 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)))) |
| 29 | 28 | eqrdv 2227 | . 2 ⊢ (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} = ((-∞(,)𝐴) ∪ (𝐴(,)+∞))) |
| 30 | retop 15183 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
| 31 | mnfxr 8191 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 32 | iooretopg 15187 | . . . 4 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞(,)𝐴) ∈ (topGen‘ran (,))) | |
| 33 | 31, 4, 32 | sylancr 414 | . . 3 ⊢ (𝐴 ∈ ℝ → (-∞(,)𝐴) ∈ (topGen‘ran (,))) |
| 34 | pnfxr 8187 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 35 | iooretopg 15187 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,)+∞) ∈ (topGen‘ran (,))) | |
| 36 | 4, 34, 35 | sylancl 413 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴(,)+∞) ∈ (topGen‘ran (,))) |
| 37 | unopn 14664 | . . 3 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,)) ∧ (𝐴(,)+∞) ∈ (topGen‘ran (,))) → ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ∈ (topGen‘ran (,))) | |
| 38 | 30, 33, 36, 37 | mp3an2i 1376 | . 2 ⊢ (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ∈ (topGen‘ran (,))) |
| 39 | 29, 38 | eqeltrd 2306 | 1 ⊢ (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ∈ (topGen‘ran (,))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 ∈ wcel 2200 {crab 2512 ∪ cun 3195 class class class wbr 4082 ran crn 4717 ‘cfv 5314 (class class class)co 5994 ℝcr 7986 +∞cpnf 8166 -∞cmnf 8167 ℝ*cxr 8168 < clt 8169 # cap 8716 (,)cioo 10072 topGenctg 13273 Topctop 14656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 ax-arch 8106 ax-caucvg 8107 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-isom 5323 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-sup 7139 df-inf 7140 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-n0 9358 df-z 9435 df-uz 9711 df-rp 9838 df-xneg 9956 df-ioo 10076 df-seqfrec 10657 df-exp 10748 df-cj 11339 df-re 11340 df-im 11341 df-rsqrt 11495 df-abs 11496 df-topgen 13279 df-top 14657 df-bases 14702 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |