Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reopnap | GIF version |
Description: The real numbers apart from a given real number form an open set. (Contributed by Jim Kingdon, 13-Dec-2023.) |
Ref | Expression |
---|---|
reopnap | ⊢ (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ∈ (topGen‘ran (,))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrabi 2879 | . . . . 5 ⊢ (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} → 𝑥 ∈ ℝ) | |
2 | 1 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} → 𝑥 ∈ ℝ)) |
3 | elun 3263 | . . . . 5 ⊢ (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐴(,)+∞))) | |
4 | rexr 7944 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
5 | elioomnf 9904 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝐴))) | |
6 | 4, 5 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝐴))) |
7 | simpl 108 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) → 𝑥 ∈ ℝ) | |
8 | 6, 7 | syl6bi 162 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ (-∞(,)𝐴) → 𝑥 ∈ ℝ)) |
9 | elioopnf 9903 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥))) | |
10 | 4, 9 | syl 14 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥))) |
11 | simpl 108 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 𝑥 ∈ ℝ) | |
12 | 10, 11 | syl6bi 162 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴(,)+∞) → 𝑥 ∈ ℝ)) |
13 | 8, 12 | jaod 707 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐴(,)+∞)) → 𝑥 ∈ ℝ)) |
14 | 3, 13 | syl5bi 151 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) → 𝑥 ∈ ℝ)) |
15 | reaplt 8486 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 # 𝐴 ↔ (𝑥 < 𝐴 ∨ 𝐴 < 𝑥))) | |
16 | 15 | ancoms 266 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝐴 ↔ (𝑥 < 𝐴 ∨ 𝐴 < 𝑥))) |
17 | breq1 3985 | . . . . . . . 8 ⊢ (𝑤 = 𝑥 → (𝑤 # 𝐴 ↔ 𝑥 # 𝐴)) | |
18 | 17 | elrab 2882 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ (𝑥 ∈ ℝ ∧ 𝑥 # 𝐴)) |
19 | ibar 299 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (𝑥 # 𝐴 ↔ (𝑥 ∈ ℝ ∧ 𝑥 # 𝐴))) | |
20 | 19 | adantl 275 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝐴 ↔ (𝑥 ∈ ℝ ∧ 𝑥 # 𝐴))) |
21 | 18, 20 | bitr4id 198 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 # 𝐴)) |
22 | 6 | baibd 913 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝐴) ↔ 𝑥 < 𝐴)) |
23 | 10 | baibd 913 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐴(,)+∞) ↔ 𝐴 < 𝑥)) |
24 | 22, 23 | orbi12d 783 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐴(,)+∞)) ↔ (𝑥 < 𝐴 ∨ 𝐴 < 𝑥))) |
25 | 3, 24 | syl5bb 191 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ↔ (𝑥 < 𝐴 ∨ 𝐴 < 𝑥))) |
26 | 16, 21, 25 | 3bitr4d 219 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)))) |
27 | 26 | ex 114 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞))))) |
28 | 2, 14, 27 | pm5.21ndd 695 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)))) |
29 | 28 | eqrdv 2163 | . 2 ⊢ (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} = ((-∞(,)𝐴) ∪ (𝐴(,)+∞))) |
30 | retop 13164 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
31 | mnfxr 7955 | . . . 4 ⊢ -∞ ∈ ℝ* | |
32 | iooretopg 13168 | . . . 4 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞(,)𝐴) ∈ (topGen‘ran (,))) | |
33 | 31, 4, 32 | sylancr 411 | . . 3 ⊢ (𝐴 ∈ ℝ → (-∞(,)𝐴) ∈ (topGen‘ran (,))) |
34 | pnfxr 7951 | . . . 4 ⊢ +∞ ∈ ℝ* | |
35 | iooretopg 13168 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,)+∞) ∈ (topGen‘ran (,))) | |
36 | 4, 34, 35 | sylancl 410 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴(,)+∞) ∈ (topGen‘ran (,))) |
37 | unopn 12643 | . . 3 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,)) ∧ (𝐴(,)+∞) ∈ (topGen‘ran (,))) → ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ∈ (topGen‘ran (,))) | |
38 | 30, 33, 36, 37 | mp3an2i 1332 | . 2 ⊢ (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ∈ (topGen‘ran (,))) |
39 | 29, 38 | eqeltrd 2243 | 1 ⊢ (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ∈ (topGen‘ran (,))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 ∈ wcel 2136 {crab 2448 ∪ cun 3114 class class class wbr 3982 ran crn 4605 ‘cfv 5188 (class class class)co 5842 ℝcr 7752 +∞cpnf 7930 -∞cmnf 7931 ℝ*cxr 7932 < clt 7933 # cap 8479 (,)cioo 9824 topGenctg 12571 Topctop 12635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-rp 9590 df-xneg 9708 df-ioo 9828 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-topgen 12577 df-top 12636 df-bases 12681 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |