Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reopnap GIF version

Theorem reopnap 12696
 Description: The real numbers apart from a given real number form an open set. (Contributed by Jim Kingdon, 13-Dec-2023.)
Assertion
Ref Expression
reopnap (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ∈ (topGen‘ran (,)))
Distinct variable group:   𝑤,𝐴

Proof of Theorem reopnap
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elrabi 2832 . . . . 5 (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} → 𝑥 ∈ ℝ)
21a1i 9 . . . 4 (𝐴 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} → 𝑥 ∈ ℝ))
3 elun 3212 . . . . 5 (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ↔ (𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐴(,)+∞)))
4 rexr 7804 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
5 elioomnf 9744 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝐴)))
64, 5syl 14 . . . . . . 7 (𝐴 ∈ ℝ → (𝑥 ∈ (-∞(,)𝐴) ↔ (𝑥 ∈ ℝ ∧ 𝑥 < 𝐴)))
7 simpl 108 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑥 < 𝐴) → 𝑥 ∈ ℝ)
86, 7syl6bi 162 . . . . . 6 (𝐴 ∈ ℝ → (𝑥 ∈ (-∞(,)𝐴) → 𝑥 ∈ ℝ))
9 elioopnf 9743 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥)))
104, 9syl 14 . . . . . . 7 (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥)))
11 simpl 108 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝐴 < 𝑥) → 𝑥 ∈ ℝ)
1210, 11syl6bi 162 . . . . . 6 (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴(,)+∞) → 𝑥 ∈ ℝ))
138, 12jaod 706 . . . . 5 (𝐴 ∈ ℝ → ((𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐴(,)+∞)) → 𝑥 ∈ ℝ))
143, 13syl5bi 151 . . . 4 (𝐴 ∈ ℝ → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) → 𝑥 ∈ ℝ))
15 reaplt 8343 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 # 𝐴 ↔ (𝑥 < 𝐴𝐴 < 𝑥)))
1615ancoms 266 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝐴 ↔ (𝑥 < 𝐴𝐴 < 𝑥)))
17 ibar 299 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 # 𝐴 ↔ (𝑥 ∈ ℝ ∧ 𝑥 # 𝐴)))
1817adantl 275 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 # 𝐴 ↔ (𝑥 ∈ ℝ ∧ 𝑥 # 𝐴)))
19 breq1 3927 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 # 𝐴𝑥 # 𝐴))
2019elrab 2835 . . . . . . 7 (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ (𝑥 ∈ ℝ ∧ 𝑥 # 𝐴))
2118, 20syl6rbbr 198 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 # 𝐴))
226baibd 908 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (-∞(,)𝐴) ↔ 𝑥 < 𝐴))
2310baibd 908 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐴(,)+∞) ↔ 𝐴 < 𝑥))
2422, 23orbi12d 782 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ (-∞(,)𝐴) ∨ 𝑥 ∈ (𝐴(,)+∞)) ↔ (𝑥 < 𝐴𝐴 < 𝑥)))
253, 24syl5bb 191 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ↔ (𝑥 < 𝐴𝐴 < 𝑥)))
2616, 21, 253bitr4d 219 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞))))
2726ex 114 . . . 4 (𝐴 ∈ ℝ → (𝑥 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞)))))
282, 14, 27pm5.21ndd 694 . . 3 (𝐴 ∈ ℝ → (𝑥 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ↔ 𝑥 ∈ ((-∞(,)𝐴) ∪ (𝐴(,)+∞))))
2928eqrdv 2135 . 2 (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} = ((-∞(,)𝐴) ∪ (𝐴(,)+∞)))
30 retop 12682 . . 3 (topGen‘ran (,)) ∈ Top
31 mnfxr 7815 . . . 4 -∞ ∈ ℝ*
32 iooretopg 12686 . . . 4 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞(,)𝐴) ∈ (topGen‘ran (,)))
3331, 4, 32sylancr 410 . . 3 (𝐴 ∈ ℝ → (-∞(,)𝐴) ∈ (topGen‘ran (,)))
34 pnfxr 7811 . . . 4 +∞ ∈ ℝ*
35 iooretopg 12686 . . . 4 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴(,)+∞) ∈ (topGen‘ran (,)))
364, 34, 35sylancl 409 . . 3 (𝐴 ∈ ℝ → (𝐴(,)+∞) ∈ (topGen‘ran (,)))
37 unopn 12161 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,)) ∧ (𝐴(,)+∞) ∈ (topGen‘ran (,))) → ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ∈ (topGen‘ran (,)))
3830, 33, 36, 37mp3an2i 1320 . 2 (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴(,)+∞)) ∈ (topGen‘ran (,)))
3929, 38eqeltrd 2214 1 (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ∈ (topGen‘ran (,)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 697   ∈ wcel 1480  {crab 2418   ∪ cun 3064   class class class wbr 3924  ran crn 4535  ‘cfv 5118  (class class class)co 5767  ℝcr 7612  +∞cpnf 7790  -∞cmnf 7791  ℝ*cxr 7792   < clt 7793   # cap 8336  (,)cioo 9664  topGenctg 12124  Topctop 12153 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-sup 6864  df-inf 6865  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-xneg 9552  df-ioo 9668  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-topgen 12130  df-top 12154  df-bases 12199 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator