ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnnei GIF version

Theorem cnnei 12390
Description: Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux, 3-Jan-2018.)
Hypotheses
Ref Expression
cnnei.x 𝑋 = 𝐽
cnnei.y 𝑌 = 𝐾
Assertion
Ref Expression
cnnei ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
Distinct variable groups:   𝑣,𝑝,𝑤,𝐹   𝐽,𝑝,𝑣,𝑤   𝐾,𝑝,𝑣,𝑤   𝑋,𝑝,𝑣,𝑤   𝑌,𝑝,𝑣,𝑤

Proof of Theorem cnnei
StepHypRef Expression
1 cnnei.x . . . . . 6 𝑋 = 𝐽
21toptopon 12174 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3 cnnei.y . . . . . 6 𝑌 = 𝐾
43toptopon 12174 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
52, 4anbi12i 455 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ↔ (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)))
6 cncnp 12388 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑝𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝))))
76baibd 908 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝)))
85, 7sylanb 282 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝)))
95anbi1i 453 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) ↔ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌))
10 iscnp4 12376 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑝𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤)))
11103expa 1181 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑝𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤)))
1211baibd 908 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑝𝑋) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
1312an32s 557 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑝𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
149, 13sylanb 282 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) ∧ 𝑝𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
1514ralbidva 2431 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) → (∀𝑝𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
168, 15bitrd 187 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
17163impa 1176 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  wral 2414  wrex 2415  wss 3066  {csn 3522   cuni 3731  cima 4537  wf 5114  cfv 5118  (class class class)co 5767  Topctop 12153  TopOnctopon 12166  neicnei 12296   Cn ccn 12343   CnP ccnp 12344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-map 6537  df-topgen 12130  df-top 12154  df-topon 12167  df-ntr 12254  df-nei 12297  df-cn 12346  df-cnp 12347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator