ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnnei GIF version

Theorem cnnei 12991
Description: Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux, 3-Jan-2018.)
Hypotheses
Ref Expression
cnnei.x 𝑋 = 𝐽
cnnei.y 𝑌 = 𝐾
Assertion
Ref Expression
cnnei ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
Distinct variable groups:   𝑣,𝑝,𝑤,𝐹   𝐽,𝑝,𝑣,𝑤   𝐾,𝑝,𝑣,𝑤   𝑋,𝑝,𝑣,𝑤   𝑌,𝑝,𝑣,𝑤

Proof of Theorem cnnei
StepHypRef Expression
1 cnnei.x . . . . . 6 𝑋 = 𝐽
21toptopon 12775 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
3 cnnei.y . . . . . 6 𝑌 = 𝐾
43toptopon 12775 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
52, 4anbi12i 457 . . . 4 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ↔ (𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)))
6 cncnp 12989 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑝𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝))))
76baibd 918 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝)))
85, 7sylanb 282 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝)))
95anbi1i 455 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) ↔ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌))
10 iscnp4 12977 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑝𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤)))
11103expa 1198 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑝𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤)))
1211baibd 918 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑝𝑋) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
1312an32s 563 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑝𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
149, 13sylanb 282 . . . 4 ((((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) ∧ 𝑝𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
1514ralbidva 2466 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) → (∀𝑝𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑝) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
168, 15bitrd 187 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
17163impa 1189 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝𝑋𝑤 ∈ ((nei‘𝐾)‘{(𝐹𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹𝑣) ⊆ 𝑤))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wral 2448  wrex 2449  wss 3121  {csn 3581   cuni 3794  cima 4612  wf 5192  cfv 5196  (class class class)co 5851  Topctop 12754  TopOnctopon 12767  neicnei 12897   Cn ccn 12944   CnP ccnp 12945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-map 6626  df-topgen 12593  df-top 12755  df-topon 12768  df-ntr 12855  df-nei 12898  df-cn 12947  df-cnp 12948
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator