| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdeq0 | GIF version | ||
| Description: Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| bdeq0 | ⊢ BOUNDED 𝑥 = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcnul 15915 | . . 3 ⊢ BOUNDED ∅ | |
| 2 | 1 | bdss 15914 | . 2 ⊢ BOUNDED 𝑥 ⊆ ∅ |
| 3 | 0ss 3501 | . . 3 ⊢ ∅ ⊆ 𝑥 | |
| 4 | eqss 3210 | . . 3 ⊢ (𝑥 = ∅ ↔ (𝑥 ⊆ ∅ ∧ ∅ ⊆ 𝑥)) | |
| 5 | 3, 4 | mpbiran2 944 | . 2 ⊢ (𝑥 = ∅ ↔ 𝑥 ⊆ ∅) |
| 6 | 2, 5 | bd0r 15875 | 1 ⊢ BOUNDED 𝑥 = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ⊆ wss 3168 ∅c0 3462 BOUNDED wbd 15862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-bd0 15863 ax-bdim 15864 ax-bdn 15867 ax-bdal 15868 ax-bdeq 15870 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-dif 3170 df-in 3174 df-ss 3181 df-nul 3463 df-bdc 15891 |
| This theorem is referenced by: bj-bd0el 15918 bj-nn0suc0 16000 |
| Copyright terms: Public domain | W3C validator |