| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdeq0 | GIF version | ||
| Description: Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.) | 
| Ref | Expression | 
|---|---|
| bdeq0 | ⊢ BOUNDED 𝑥 = ∅ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bdcnul 15511 | . . 3 ⊢ BOUNDED ∅ | |
| 2 | 1 | bdss 15510 | . 2 ⊢ BOUNDED 𝑥 ⊆ ∅ | 
| 3 | 0ss 3489 | . . 3 ⊢ ∅ ⊆ 𝑥 | |
| 4 | eqss 3198 | . . 3 ⊢ (𝑥 = ∅ ↔ (𝑥 ⊆ ∅ ∧ ∅ ⊆ 𝑥)) | |
| 5 | 3, 4 | mpbiran2 943 | . 2 ⊢ (𝑥 = ∅ ↔ 𝑥 ⊆ ∅) | 
| 6 | 2, 5 | bd0r 15471 | 1 ⊢ BOUNDED 𝑥 = ∅ | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ⊆ wss 3157 ∅c0 3450 BOUNDED wbd 15458 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-bd0 15459 ax-bdim 15460 ax-bdn 15463 ax-bdal 15464 ax-bdeq 15466 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-bdc 15487 | 
| This theorem is referenced by: bj-bd0el 15514 bj-nn0suc0 15596 | 
| Copyright terms: Public domain | W3C validator |