Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeq0 GIF version

Theorem bdeq0 15359
Description: Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeq0 BOUNDED 𝑥 = ∅

Proof of Theorem bdeq0
StepHypRef Expression
1 bdcnul 15357 . . 3 BOUNDED
21bdss 15356 . 2 BOUNDED 𝑥 ⊆ ∅
3 0ss 3485 . . 3 ∅ ⊆ 𝑥
4 eqss 3194 . . 3 (𝑥 = ∅ ↔ (𝑥 ⊆ ∅ ∧ ∅ ⊆ 𝑥))
53, 4mpbiran2 943 . 2 (𝑥 = ∅ ↔ 𝑥 ⊆ ∅)
62, 5bd0r 15317 1 BOUNDED 𝑥 = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wss 3153  c0 3446  BOUNDED wbd 15304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-bd0 15305  ax-bdim 15306  ax-bdn 15309  ax-bdal 15310  ax-bdeq 15312
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-bdc 15333
This theorem is referenced by:  bj-bd0el  15360  bj-nn0suc0  15442
  Copyright terms: Public domain W3C validator