Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdeq0 | GIF version |
Description: Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
bdeq0 | ⊢ BOUNDED 𝑥 = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcnul 13747 | . . 3 ⊢ BOUNDED ∅ | |
2 | 1 | bdss 13746 | . 2 ⊢ BOUNDED 𝑥 ⊆ ∅ |
3 | 0ss 3447 | . . 3 ⊢ ∅ ⊆ 𝑥 | |
4 | eqss 3157 | . . 3 ⊢ (𝑥 = ∅ ↔ (𝑥 ⊆ ∅ ∧ ∅ ⊆ 𝑥)) | |
5 | 3, 4 | mpbiran2 931 | . 2 ⊢ (𝑥 = ∅ ↔ 𝑥 ⊆ ∅) |
6 | 2, 5 | bd0r 13707 | 1 ⊢ BOUNDED 𝑥 = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ⊆ wss 3116 ∅c0 3409 BOUNDED wbd 13694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-bd0 13695 ax-bdim 13696 ax-bdn 13699 ax-bdal 13700 ax-bdeq 13702 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-bdc 13723 |
This theorem is referenced by: bj-bd0el 13750 bj-nn0suc0 13832 |
Copyright terms: Public domain | W3C validator |