Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeq0 GIF version

Theorem bdeq0 15597
Description: Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeq0 BOUNDED 𝑥 = ∅

Proof of Theorem bdeq0
StepHypRef Expression
1 bdcnul 15595 . . 3 BOUNDED
21bdss 15594 . 2 BOUNDED 𝑥 ⊆ ∅
3 0ss 3490 . . 3 ∅ ⊆ 𝑥
4 eqss 3199 . . 3 (𝑥 = ∅ ↔ (𝑥 ⊆ ∅ ∧ ∅ ⊆ 𝑥))
53, 4mpbiran2 943 . 2 (𝑥 = ∅ ↔ 𝑥 ⊆ ∅)
62, 5bd0r 15555 1 BOUNDED 𝑥 = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wss 3157  c0 3451  BOUNDED wbd 15542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bd0 15543  ax-bdim 15544  ax-bdn 15547  ax-bdal 15548  ax-bdeq 15550
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3452  df-bdc 15571
This theorem is referenced by:  bj-bd0el  15598  bj-nn0suc0  15680
  Copyright terms: Public domain W3C validator