| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdeq0 | GIF version | ||
| Description: Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| bdeq0 | ⊢ BOUNDED 𝑥 = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcnul 16158 | . . 3 ⊢ BOUNDED ∅ | |
| 2 | 1 | bdss 16157 | . 2 ⊢ BOUNDED 𝑥 ⊆ ∅ |
| 3 | 0ss 3530 | . . 3 ⊢ ∅ ⊆ 𝑥 | |
| 4 | eqss 3239 | . . 3 ⊢ (𝑥 = ∅ ↔ (𝑥 ⊆ ∅ ∧ ∅ ⊆ 𝑥)) | |
| 5 | 3, 4 | mpbiran2 947 | . 2 ⊢ (𝑥 = ∅ ↔ 𝑥 ⊆ ∅) |
| 6 | 2, 5 | bd0r 16118 | 1 ⊢ BOUNDED 𝑥 = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ⊆ wss 3197 ∅c0 3491 BOUNDED wbd 16105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-bd0 16106 ax-bdim 16107 ax-bdn 16110 ax-bdal 16111 ax-bdeq 16113 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-bdc 16134 |
| This theorem is referenced by: bj-bd0el 16161 bj-nn0suc0 16243 |
| Copyright terms: Public domain | W3C validator |