Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeq0 GIF version

Theorem bdeq0 13749
Description: Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeq0 BOUNDED 𝑥 = ∅

Proof of Theorem bdeq0
StepHypRef Expression
1 bdcnul 13747 . . 3 BOUNDED
21bdss 13746 . 2 BOUNDED 𝑥 ⊆ ∅
3 0ss 3447 . . 3 ∅ ⊆ 𝑥
4 eqss 3157 . . 3 (𝑥 = ∅ ↔ (𝑥 ⊆ ∅ ∧ ∅ ⊆ 𝑥))
53, 4mpbiran2 931 . 2 (𝑥 = ∅ ↔ 𝑥 ⊆ ∅)
62, 5bd0r 13707 1 BOUNDED 𝑥 = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wss 3116  c0 3409  BOUNDED wbd 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-bd0 13695  ax-bdim 13696  ax-bdn 13699  ax-bdal 13700  ax-bdeq 13702
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-bdc 13723
This theorem is referenced by:  bj-bd0el  13750  bj-nn0suc0  13832
  Copyright terms: Public domain W3C validator