Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeq0 GIF version

Theorem bdeq0 15917
Description: Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeq0 BOUNDED 𝑥 = ∅

Proof of Theorem bdeq0
StepHypRef Expression
1 bdcnul 15915 . . 3 BOUNDED
21bdss 15914 . 2 BOUNDED 𝑥 ⊆ ∅
3 0ss 3501 . . 3 ∅ ⊆ 𝑥
4 eqss 3210 . . 3 (𝑥 = ∅ ↔ (𝑥 ⊆ ∅ ∧ ∅ ⊆ 𝑥))
53, 4mpbiran2 944 . 2 (𝑥 = ∅ ↔ 𝑥 ⊆ ∅)
62, 5bd0r 15875 1 BOUNDED 𝑥 = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wss 3168  c0 3462  BOUNDED wbd 15862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-bd0 15863  ax-bdim 15864  ax-bdn 15867  ax-bdal 15868  ax-bdeq 15870
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-dif 3170  df-in 3174  df-ss 3181  df-nul 3463  df-bdc 15891
This theorem is referenced by:  bj-bd0el  15918  bj-nn0suc0  16000
  Copyright terms: Public domain W3C validator