Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeq0 GIF version

Theorem bdeq0 13902
Description: Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.)
Assertion
Ref Expression
bdeq0 BOUNDED 𝑥 = ∅

Proof of Theorem bdeq0
StepHypRef Expression
1 bdcnul 13900 . . 3 BOUNDED
21bdss 13899 . 2 BOUNDED 𝑥 ⊆ ∅
3 0ss 3453 . . 3 ∅ ⊆ 𝑥
4 eqss 3162 . . 3 (𝑥 = ∅ ↔ (𝑥 ⊆ ∅ ∧ ∅ ⊆ 𝑥))
53, 4mpbiran2 936 . 2 (𝑥 = ∅ ↔ 𝑥 ⊆ ∅)
62, 5bd0r 13860 1 BOUNDED 𝑥 = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wss 3121  c0 3414  BOUNDED wbd 13847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-bd0 13848  ax-bdim 13849  ax-bdn 13852  ax-bdal 13853  ax-bdeq 13855
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-bdc 13876
This theorem is referenced by:  bj-bd0el  13903  bj-nn0suc0  13985
  Copyright terms: Public domain W3C validator