Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpw GIF version

Theorem bdcpw 14181
Description: The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdcpw.1 BOUNDED 𝐴
Assertion
Ref Expression
bdcpw BOUNDED 𝒫 𝐴

Proof of Theorem bdcpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bdcpw.1 . . . 4 BOUNDED 𝐴
21bdss 14176 . . 3 BOUNDED 𝑥𝐴
32bdcab 14161 . 2 BOUNDED {𝑥𝑥𝐴}
4 df-pw 3574 . 2 𝒫 𝐴 = {𝑥𝑥𝐴}
53, 4bdceqir 14156 1 BOUNDED 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:  {cab 2161  wss 3127  𝒫 cpw 3572  BOUNDED wbdc 14152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-bd0 14125  ax-bdal 14130  ax-bdsb 14134
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-ral 2458  df-in 3133  df-ss 3140  df-pw 3574  df-bdc 14153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator