Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpw GIF version

Theorem bdcpw 14809
Description: The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdcpw.1 BOUNDED 𝐴
Assertion
Ref Expression
bdcpw BOUNDED 𝒫 𝐴

Proof of Theorem bdcpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bdcpw.1 . . . 4 BOUNDED 𝐴
21bdss 14804 . . 3 BOUNDED 𝑥𝐴
32bdcab 14789 . 2 BOUNDED {𝑥𝑥𝐴}
4 df-pw 3579 . 2 𝒫 𝐴 = {𝑥𝑥𝐴}
53, 4bdceqir 14784 1 BOUNDED 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:  {cab 2163  wss 3131  𝒫 cpw 3577  BOUNDED wbdc 14780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-bd0 14753  ax-bdal 14758  ax-bdsb 14762
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-ral 2460  df-in 3137  df-ss 3144  df-pw 3579  df-bdc 14781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator