Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpw GIF version

Theorem bdcpw 14974
Description: The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdcpw.1 BOUNDED 𝐴
Assertion
Ref Expression
bdcpw BOUNDED 𝒫 𝐴

Proof of Theorem bdcpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bdcpw.1 . . . 4 BOUNDED 𝐴
21bdss 14969 . . 3 BOUNDED 𝑥𝐴
32bdcab 14954 . 2 BOUNDED {𝑥𝑥𝐴}
4 df-pw 3589 . 2 𝒫 𝐴 = {𝑥𝑥𝐴}
53, 4bdceqir 14949 1 BOUNDED 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:  {cab 2173  wss 3141  𝒫 cpw 3587  BOUNDED wbdc 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-11 1516  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-bd0 14918  ax-bdal 14923  ax-bdsb 14927
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-ral 2470  df-in 3147  df-ss 3154  df-pw 3589  df-bdc 14946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator