![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcpw | GIF version |
Description: The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bdcpw.1 | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bdcpw | ⊢ BOUNDED 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcpw.1 | . . . 4 ⊢ BOUNDED 𝐴 | |
2 | 1 | bdss 14176 | . . 3 ⊢ BOUNDED 𝑥 ⊆ 𝐴 |
3 | 2 | bdcab 14161 | . 2 ⊢ BOUNDED {𝑥 ∣ 𝑥 ⊆ 𝐴} |
4 | df-pw 3574 | . 2 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
5 | 3, 4 | bdceqir 14156 | 1 ⊢ BOUNDED 𝒫 𝐴 |
Colors of variables: wff set class |
Syntax hints: {cab 2161 ⊆ wss 3127 𝒫 cpw 3572 BOUNDED wbdc 14152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-bd0 14125 ax-bdal 14130 ax-bdsb 14134 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-ral 2458 df-in 3133 df-ss 3140 df-pw 3574 df-bdc 14153 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |