Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpw GIF version

Theorem bdcpw 16190
Description: The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdcpw.1 BOUNDED 𝐴
Assertion
Ref Expression
bdcpw BOUNDED 𝒫 𝐴

Proof of Theorem bdcpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bdcpw.1 . . . 4 BOUNDED 𝐴
21bdss 16185 . . 3 BOUNDED 𝑥𝐴
32bdcab 16170 . 2 BOUNDED {𝑥𝑥𝐴}
4 df-pw 3651 . 2 𝒫 𝐴 = {𝑥𝑥𝐴}
53, 4bdceqir 16165 1 BOUNDED 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:  {cab 2215  wss 3197  𝒫 cpw 3649  BOUNDED wbdc 16161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16134  ax-bdal 16139  ax-bdsb 16143
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-in 3203  df-ss 3210  df-pw 3651  df-bdc 16162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator