Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcpw | GIF version |
Description: The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.) |
Ref | Expression |
---|---|
bdcpw.1 | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bdcpw | ⊢ BOUNDED 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcpw.1 | . . . 4 ⊢ BOUNDED 𝐴 | |
2 | 1 | bdss 13899 | . . 3 ⊢ BOUNDED 𝑥 ⊆ 𝐴 |
3 | 2 | bdcab 13884 | . 2 ⊢ BOUNDED {𝑥 ∣ 𝑥 ⊆ 𝐴} |
4 | df-pw 3568 | . 2 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
5 | 3, 4 | bdceqir 13879 | 1 ⊢ BOUNDED 𝒫 𝐴 |
Colors of variables: wff set class |
Syntax hints: {cab 2156 ⊆ wss 3121 𝒫 cpw 3566 BOUNDED wbdc 13875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-bd0 13848 ax-bdal 13853 ax-bdsb 13857 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-in 3127 df-ss 3134 df-pw 3568 df-bdc 13876 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |