Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpw GIF version

Theorem bdcpw 16004
Description: The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdcpw.1 BOUNDED 𝐴
Assertion
Ref Expression
bdcpw BOUNDED 𝒫 𝐴

Proof of Theorem bdcpw
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 bdcpw.1 . . . 4 BOUNDED 𝐴
21bdss 15999 . . 3 BOUNDED 𝑥𝐴
32bdcab 15984 . 2 BOUNDED {𝑥𝑥𝐴}
4 df-pw 3628 . 2 𝒫 𝐴 = {𝑥𝑥𝐴}
53, 4bdceqir 15979 1 BOUNDED 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:  {cab 2193  wss 3174  𝒫 cpw 3626  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-bd0 15948  ax-bdal 15953  ax-bdsb 15957
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-ral 2491  df-in 3180  df-ss 3187  df-pw 3628  df-bdc 15976
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator