![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-tp | GIF version |
Description: Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 3606 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 3605 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 3604 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3139 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1363 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff set class |
This definition is referenced by: eltpg 3649 raltpg 3657 rextpg 3658 tpeq1 3690 tpeq2 3691 tpeq3 3692 tpcoma 3698 tpass 3700 qdass 3701 tpidm12 3703 diftpsn3 3745 snsstp1 3754 snsstp2 3755 snsstp3 3756 prsstp12 3757 tpss 3770 tpssi 3771 ord3ex 4202 tpexg 4456 dmtpop 5116 funtpg 5279 funtp 5281 fntpg 5284 ftpg 5713 fvtp1g 5737 tpfidisj 6941 fztp 10092 sumtp 11436 strle3g 12582 lsptpcl 13583 bdctp 14920 |
Copyright terms: Public domain | W3C validator |