Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-tp | GIF version |
Description: Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 3591 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 3590 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 3589 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3125 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1353 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff set class |
This definition is referenced by: eltpg 3634 raltpg 3642 rextpg 3643 tpeq1 3675 tpeq2 3676 tpeq3 3677 tpcoma 3683 tpass 3685 qdass 3686 tpidm12 3688 diftpsn3 3730 snsstp1 3739 snsstp2 3740 snsstp3 3741 prsstp12 3742 tpss 3754 tpssi 3755 ord3ex 4185 tpexg 4438 dmtpop 5096 funtpg 5259 funtp 5261 fntpg 5264 ftpg 5692 fvtp1g 5716 tpfidisj 6917 fztp 10046 sumtp 11388 strle3g 12521 bdctp 14164 |
Copyright terms: Public domain | W3C validator |