![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-tp | GIF version |
Description: Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 3476 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 3475 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 3474 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3019 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1299 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff set class |
This definition is referenced by: eltpg 3516 raltpg 3523 rextpg 3524 tpeq1 3556 tpeq2 3557 tpeq3 3558 tpcoma 3564 tpass 3566 qdass 3567 tpidm12 3569 diftpsn3 3608 snsstp1 3617 snsstp2 3618 snsstp3 3619 prsstp12 3620 tpss 3632 tpssi 3633 ord3ex 4054 tpexg 4303 dmtpop 4950 funtpg 5110 funtp 5112 fntpg 5115 ftpg 5536 fvtp1g 5560 tpfidisj 6745 fztp 9699 sumtp 11022 strle3g 11833 bdctp 12651 |
Copyright terms: Public domain | W3C validator |