Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-tp | GIF version |
Description: Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 3578 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 3577 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 3576 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3114 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1343 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff set class |
This definition is referenced by: eltpg 3621 raltpg 3629 rextpg 3630 tpeq1 3662 tpeq2 3663 tpeq3 3664 tpcoma 3670 tpass 3672 qdass 3673 tpidm12 3675 diftpsn3 3714 snsstp1 3723 snsstp2 3724 snsstp3 3725 prsstp12 3726 tpss 3738 tpssi 3739 ord3ex 4169 tpexg 4422 dmtpop 5079 funtpg 5239 funtp 5241 fntpg 5244 ftpg 5669 fvtp1g 5693 tpfidisj 6893 fztp 10013 sumtp 11355 strle3g 12487 bdctp 13754 |
Copyright terms: Public domain | W3C validator |