![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-tp | GIF version |
Description: Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 3594 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 3593 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 3592 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3127 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1353 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff set class |
This definition is referenced by: eltpg 3637 raltpg 3645 rextpg 3646 tpeq1 3678 tpeq2 3679 tpeq3 3680 tpcoma 3686 tpass 3688 qdass 3689 tpidm12 3691 diftpsn3 3733 snsstp1 3742 snsstp2 3743 snsstp3 3744 prsstp12 3745 tpss 3758 tpssi 3759 ord3ex 4190 tpexg 4444 dmtpop 5104 funtpg 5267 funtp 5269 fntpg 5272 ftpg 5700 fvtp1g 5724 tpfidisj 6926 fztp 10077 sumtp 11421 strle3g 12566 bdctp 14594 |
Copyright terms: Public domain | W3C validator |