![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-tp | GIF version |
Description: Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 3621 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 3620 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 3619 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3152 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1364 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff set class |
This definition is referenced by: eltpg 3664 raltpg 3672 rextpg 3673 tpeq1 3705 tpeq2 3706 tpeq3 3707 tpcoma 3713 tpass 3715 qdass 3716 tpidm12 3718 diftpsn3 3760 snsstp1 3769 snsstp2 3770 snsstp3 3771 prsstp12 3772 tpss 3785 tpssi 3786 ord3ex 4220 tpexg 4476 dmtpop 5142 funtpg 5306 funtp 5308 fntpg 5311 ftpg 5743 fvtp1g 5767 tpfidisj 6986 fztp 10147 sumtp 11560 strle3g 12729 lsptpcl 13893 bdctp 15434 |
Copyright terms: Public domain | W3C validator |