Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-tp | GIF version |
Description: Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 3585 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 3584 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 3583 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3119 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1348 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff set class |
This definition is referenced by: eltpg 3628 raltpg 3636 rextpg 3637 tpeq1 3669 tpeq2 3670 tpeq3 3671 tpcoma 3677 tpass 3679 qdass 3680 tpidm12 3682 diftpsn3 3721 snsstp1 3730 snsstp2 3731 snsstp3 3732 prsstp12 3733 tpss 3745 tpssi 3746 ord3ex 4176 tpexg 4429 dmtpop 5086 funtpg 5249 funtp 5251 fntpg 5254 ftpg 5680 fvtp1g 5704 tpfidisj 6905 fztp 10034 sumtp 11377 strle3g 12510 bdctp 13907 |
Copyright terms: Public domain | W3C validator |