| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-tp | GIF version | ||
| Description: Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | cC | . . 3 class 𝐶 | |
| 4 | 1, 2, 3 | ctp 3636 | . 2 class {𝐴, 𝐵, 𝐶} |
| 5 | 1, 2 | cpr 3635 | . . 3 class {𝐴, 𝐵} |
| 6 | 3 | csn 3634 | . . 3 class {𝐶} |
| 7 | 5, 6 | cun 3165 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
| 8 | 4, 7 | wceq 1373 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
| Colors of variables: wff set class |
| This definition is referenced by: eltpg 3679 raltpg 3687 rextpg 3688 tpeq1 3720 tpeq2 3721 tpeq3 3722 tpcoma 3728 tpass 3730 qdass 3731 tpidm12 3733 diftpsn3 3776 snsstp1 3785 snsstp2 3786 snsstp3 3787 prsstp12 3788 tpss 3801 tpssi 3802 ord3ex 4238 tpexg 4495 dmtpop 5163 funtpg 5330 funtp 5332 fntpg 5335 ftpg 5775 fvtp1g 5799 tpfidisj 7033 tpfidceq 7034 fztp 10207 sumtp 11769 strle3g 12984 lsptpcl 14200 perfectlem2 15516 bdctp 15882 |
| Copyright terms: Public domain | W3C validator |