![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-tp | GIF version |
Description: Define unordered triple of classes. Definition of [Enderton] p. 19. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
df-tp | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cC | . . 3 class 𝐶 | |
4 | 1, 2, 3 | ctp 3595 | . 2 class {𝐴, 𝐵, 𝐶} |
5 | 1, 2 | cpr 3594 | . . 3 class {𝐴, 𝐵} |
6 | 3 | csn 3593 | . . 3 class {𝐶} |
7 | 5, 6 | cun 3128 | . 2 class ({𝐴, 𝐵} ∪ {𝐶}) |
8 | 4, 7 | wceq 1353 | 1 wff {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
Colors of variables: wff set class |
This definition is referenced by: eltpg 3638 raltpg 3646 rextpg 3647 tpeq1 3679 tpeq2 3680 tpeq3 3681 tpcoma 3687 tpass 3689 qdass 3690 tpidm12 3692 diftpsn3 3734 snsstp1 3743 snsstp2 3744 snsstp3 3745 prsstp12 3746 tpss 3759 tpssi 3760 ord3ex 4191 tpexg 4445 dmtpop 5105 funtpg 5268 funtp 5270 fntpg 5273 ftpg 5701 fvtp1g 5725 tpfidisj 6927 fztp 10078 sumtp 11422 strle3g 12567 bdctp 14627 |
Copyright terms: Public domain | W3C validator |