Proof of Theorem prime
| Step | Hyp | Ref
| Expression |
| 1 | | nnz 9362 |
. . . . . . 7
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℤ) |
| 2 | | 1z 9369 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
| 3 | | zdceq 9418 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 1 ∈
ℤ) → DECID 𝑥 = 1) |
| 4 | 2, 3 | mpan2 425 |
. . . . . . 7
⊢ (𝑥 ∈ ℤ →
DECID 𝑥 =
1) |
| 5 | | dfordc 893 |
. . . . . . . 8
⊢
(DECID 𝑥 = 1 → ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (¬ 𝑥 = 1 → 𝑥 = 𝐴))) |
| 6 | | df-ne 2368 |
. . . . . . . . 9
⊢ (𝑥 ≠ 1 ↔ ¬ 𝑥 = 1) |
| 7 | 6 | imbi1i 238 |
. . . . . . . 8
⊢ ((𝑥 ≠ 1 → 𝑥 = 𝐴) ↔ (¬ 𝑥 = 1 → 𝑥 = 𝐴)) |
| 8 | 5, 7 | bitr4di 198 |
. . . . . . 7
⊢
(DECID 𝑥 = 1 → ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → 𝑥 = 𝐴))) |
| 9 | 1, 4, 8 | 3syl 17 |
. . . . . 6
⊢ (𝑥 ∈ ℕ → ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → 𝑥 = 𝐴))) |
| 10 | 9 | imbi2d 230 |
. . . . 5
⊢ (𝑥 ∈ ℕ → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴)))) |
| 11 | | impexp 263 |
. . . . . 6
⊢ (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 = 𝐴))) |
| 12 | | bi2.04 248 |
. . . . . 6
⊢ ((𝑥 ≠ 1 → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 = 𝐴)) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴))) |
| 13 | 11, 12 | bitri 184 |
. . . . 5
⊢ (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴))) |
| 14 | 10, 13 | bitr4di 198 |
. . . 4
⊢ (𝑥 ∈ ℕ → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |
| 15 | 14 | adantl 277 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |
| 16 | | nngt1ne1 9042 |
. . . . . . 7
⊢ (𝑥 ∈ ℕ → (1 <
𝑥 ↔ 𝑥 ≠ 1)) |
| 17 | 16 | adantl 277 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (1 <
𝑥 ↔ 𝑥 ≠ 1)) |
| 18 | 17 | anbi1d 465 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 <
𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ))) |
| 19 | | nnz 9362 |
. . . . . . . . 9
⊢ ((𝐴 / 𝑥) ∈ ℕ → (𝐴 / 𝑥) ∈ ℤ) |
| 20 | | nnre 9014 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℝ) |
| 21 | | gtndiv 9438 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ ∧ 𝐴 < 𝑥) → ¬ (𝐴 / 𝑥) ∈ ℤ) |
| 22 | 21 | 3expia 1207 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝑥 → ¬ (𝐴 / 𝑥) ∈ ℤ)) |
| 23 | 20, 22 | sylan 283 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝑥 → ¬ (𝐴 / 𝑥) ∈ ℤ)) |
| 24 | 23 | con2d 625 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → ¬ 𝐴 < 𝑥)) |
| 25 | | nnre 9014 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) |
| 26 | | lenlt 8119 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) |
| 27 | 20, 25, 26 | syl2an 289 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) |
| 28 | 24, 27 | sylibrd 169 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → 𝑥 ≤ 𝐴)) |
| 29 | 28 | ancoms 268 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → 𝑥 ≤ 𝐴)) |
| 30 | 19, 29 | syl5 32 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 ≤ 𝐴)) |
| 31 | 30 | pm4.71rd 394 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ ↔ (𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))) |
| 32 | 31 | anbi2d 464 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 <
𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ (𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))) |
| 33 | | 3anass 984 |
. . . . . 6
⊢ ((1 <
𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ (𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))) |
| 34 | 32, 33 | bitr4di 198 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 <
𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))) |
| 35 | 18, 34 | bitr3d 190 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))) |
| 36 | 35 | imbi1d 231 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |
| 37 | 15, 36 | bitrd 188 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |
| 38 | 37 | ralbidva 2493 |
1
⊢ (𝐴 ∈ ℕ →
(∀𝑥 ∈ ℕ
((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |