Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  prime GIF version

Theorem prime 9246
 Description: Two ways to express "𝐴 is a prime number (or 1)." (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
prime (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem prime
StepHypRef Expression
1 nnz 9169 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
2 1z 9176 . . . . . . . 8 1 ∈ ℤ
3 zdceq 9222 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑥 = 1)
42, 3mpan2 422 . . . . . . 7 (𝑥 ∈ ℤ → DECID 𝑥 = 1)
5 dfordc 878 . . . . . . . 8 (DECID 𝑥 = 1 → ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (¬ 𝑥 = 1 → 𝑥 = 𝐴)))
6 df-ne 2328 . . . . . . . . 9 (𝑥 ≠ 1 ↔ ¬ 𝑥 = 1)
76imbi1i 237 . . . . . . . 8 ((𝑥 ≠ 1 → 𝑥 = 𝐴) ↔ (¬ 𝑥 = 1 → 𝑥 = 𝐴))
85, 7bitr4di 197 . . . . . . 7 (DECID 𝑥 = 1 → ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → 𝑥 = 𝐴)))
91, 4, 83syl 17 . . . . . 6 (𝑥 ∈ ℕ → ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → 𝑥 = 𝐴)))
109imbi2d 229 . . . . 5 (𝑥 ∈ ℕ → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴))))
11 impexp 261 . . . . . 6 (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 = 𝐴)))
12 bi2.04 247 . . . . . 6 ((𝑥 ≠ 1 → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 = 𝐴)) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴)))
1311, 12bitri 183 . . . . 5 (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴)))
1410, 13bitr4di 197 . . . 4 (𝑥 ∈ ℕ → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
1514adantl 275 . . 3 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
16 nngt1ne1 8851 . . . . . . 7 (𝑥 ∈ ℕ → (1 < 𝑥𝑥 ≠ 1))
1716adantl 275 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (1 < 𝑥𝑥 ≠ 1))
1817anbi1d 461 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ)))
19 nnz 9169 . . . . . . . . 9 ((𝐴 / 𝑥) ∈ ℕ → (𝐴 / 𝑥) ∈ ℤ)
20 nnre 8823 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
21 gtndiv 9242 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ ∧ 𝐴 < 𝑥) → ¬ (𝐴 / 𝑥) ∈ ℤ)
22213expia 1187 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝑥 → ¬ (𝐴 / 𝑥) ∈ ℤ))
2320, 22sylan 281 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝑥 → ¬ (𝐴 / 𝑥) ∈ ℤ))
2423con2d 614 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → ¬ 𝐴 < 𝑥))
25 nnre 8823 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
26 lenlt 7936 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
2720, 25, 26syl2an 287 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
2824, 27sylibrd 168 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → 𝑥𝐴))
2928ancoms 266 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → 𝑥𝐴))
3019, 29syl5 32 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → 𝑥𝐴))
3130pm4.71rd 392 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ ↔ (𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))
3231anbi2d 460 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ (𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))))
33 3anass 967 . . . . . 6 ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ (𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))
3432, 33bitr4di 197 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))
3518, 34bitr3d 189 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))
3635imbi1d 230 . . 3 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
3715, 36bitrd 187 . 2 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
3837ralbidva 2453 1 (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 698  DECID wdc 820   ∧ w3a 963   = wceq 1335   ∈ wcel 2128   ≠ wne 2327  ∀wral 2435   class class class wbr 3965  (class class class)co 5818  ℝcr 7714  1c1 7716   < clt 7895   ≤ cle 7896   / cdiv 8528  ℕcn 8816  ℤcz 9150 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-id 4252  df-po 4255  df-iso 4256  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-iota 5132  df-fun 5169  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-n0 9074  df-z 9151 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator