ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prime GIF version

Theorem prime 8771
Description: Two ways to express "𝐴 is a prime number (or 1)." (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
prime (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem prime
StepHypRef Expression
1 nnz 8695 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
2 1z 8702 . . . . . . . 8 1 ∈ ℤ
3 zdceq 8748 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑥 = 1)
42, 3mpan2 416 . . . . . . 7 (𝑥 ∈ ℤ → DECID 𝑥 = 1)
5 dfordc 827 . . . . . . . 8 (DECID 𝑥 = 1 → ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (¬ 𝑥 = 1 → 𝑥 = 𝐴)))
6 df-ne 2252 . . . . . . . . 9 (𝑥 ≠ 1 ↔ ¬ 𝑥 = 1)
76imbi1i 236 . . . . . . . 8 ((𝑥 ≠ 1 → 𝑥 = 𝐴) ↔ (¬ 𝑥 = 1 → 𝑥 = 𝐴))
85, 7syl6bbr 196 . . . . . . 7 (DECID 𝑥 = 1 → ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → 𝑥 = 𝐴)))
91, 4, 83syl 17 . . . . . 6 (𝑥 ∈ ℕ → ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → 𝑥 = 𝐴)))
109imbi2d 228 . . . . 5 (𝑥 ∈ ℕ → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴))))
11 impexp 259 . . . . . 6 (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 = 𝐴)))
12 bi2.04 246 . . . . . 6 ((𝑥 ≠ 1 → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 = 𝐴)) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴)))
1311, 12bitri 182 . . . . 5 (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴)))
1410, 13syl6bbr 196 . . . 4 (𝑥 ∈ ℕ → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
1514adantl 271 . . 3 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
16 nngt1ne1 8384 . . . . . . 7 (𝑥 ∈ ℕ → (1 < 𝑥𝑥 ≠ 1))
1716adantl 271 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (1 < 𝑥𝑥 ≠ 1))
1817anbi1d 453 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ)))
19 nnz 8695 . . . . . . . . 9 ((𝐴 / 𝑥) ∈ ℕ → (𝐴 / 𝑥) ∈ ℤ)
20 nnre 8357 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
21 gtndiv 8767 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ ∧ 𝐴 < 𝑥) → ¬ (𝐴 / 𝑥) ∈ ℤ)
22213expia 1143 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝑥 → ¬ (𝐴 / 𝑥) ∈ ℤ))
2320, 22sylan 277 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝑥 → ¬ (𝐴 / 𝑥) ∈ ℤ))
2423con2d 587 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → ¬ 𝐴 < 𝑥))
25 nnre 8357 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
26 lenlt 7498 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
2720, 25, 26syl2an 283 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
2824, 27sylibrd 167 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → 𝑥𝐴))
2928ancoms 264 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → 𝑥𝐴))
3019, 29syl5 32 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → 𝑥𝐴))
3130pm4.71rd 386 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ ↔ (𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))
3231anbi2d 452 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ (𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))))
33 3anass 926 . . . . . 6 ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ (𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))
3432, 33syl6bbr 196 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))
3518, 34bitr3d 188 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))
3635imbi1d 229 . . 3 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
3715, 36bitrd 186 . 2 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
3837ralbidva 2372 1 (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  DECID wdc 778  w3a 922   = wceq 1287  wcel 1436  wne 2251  wral 2355   class class class wbr 3820  (class class class)co 5607  cr 7286  1c1 7288   < clt 7459  cle 7460   / cdiv 8071  cn 8350  cz 8676
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3931  ax-pow 3983  ax-pr 4009  ax-un 4233  ax-setind 4325  ax-cnex 7373  ax-resscn 7374  ax-1cn 7375  ax-1re 7376  ax-icn 7377  ax-addcl 7378  ax-addrcl 7379  ax-mulcl 7380  ax-mulrcl 7381  ax-addcom 7382  ax-mulcom 7383  ax-addass 7384  ax-mulass 7385  ax-distr 7386  ax-i2m1 7387  ax-0lt1 7388  ax-1rid 7389  ax-0id 7390  ax-rnegex 7391  ax-precex 7392  ax-cnre 7393  ax-pre-ltirr 7394  ax-pre-ltwlin 7395  ax-pre-lttrn 7396  ax-pre-apti 7397  ax-pre-ltadd 7398  ax-pre-mulgt0 7399  ax-pre-mulext 7400
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-br 3821  df-opab 3875  df-id 4093  df-po 4096  df-iso 4097  df-xp 4416  df-rel 4417  df-cnv 4418  df-co 4419  df-dm 4420  df-iota 4943  df-fun 4980  df-fv 4986  df-riota 5563  df-ov 5610  df-oprab 5611  df-mpt2 5612  df-pnf 7461  df-mnf 7462  df-xr 7463  df-ltxr 7464  df-le 7465  df-sub 7592  df-neg 7593  df-reap 7986  df-ap 7993  df-div 8072  df-inn 8351  df-n0 8600  df-z 8677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator