Proof of Theorem prime
| Step | Hyp | Ref
 | Expression | 
| 1 |   | nnz 9345 | 
. . . . . . 7
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℤ) | 
| 2 |   | 1z 9352 | 
. . . . . . . 8
⊢ 1 ∈
ℤ | 
| 3 |   | zdceq 9401 | 
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 1 ∈
ℤ) → DECID 𝑥 = 1) | 
| 4 | 2, 3 | mpan2 425 | 
. . . . . . 7
⊢ (𝑥 ∈ ℤ →
DECID 𝑥 =
1) | 
| 5 |   | dfordc 893 | 
. . . . . . . 8
⊢
(DECID 𝑥 = 1 → ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (¬ 𝑥 = 1 → 𝑥 = 𝐴))) | 
| 6 |   | df-ne 2368 | 
. . . . . . . . 9
⊢ (𝑥 ≠ 1 ↔ ¬ 𝑥 = 1) | 
| 7 | 6 | imbi1i 238 | 
. . . . . . . 8
⊢ ((𝑥 ≠ 1 → 𝑥 = 𝐴) ↔ (¬ 𝑥 = 1 → 𝑥 = 𝐴)) | 
| 8 | 5, 7 | bitr4di 198 | 
. . . . . . 7
⊢
(DECID 𝑥 = 1 → ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → 𝑥 = 𝐴))) | 
| 9 | 1, 4, 8 | 3syl 17 | 
. . . . . 6
⊢ (𝑥 ∈ ℕ → ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → 𝑥 = 𝐴))) | 
| 10 | 9 | imbi2d 230 | 
. . . . 5
⊢ (𝑥 ∈ ℕ → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴)))) | 
| 11 |   | impexp 263 | 
. . . . . 6
⊢ (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 = 𝐴))) | 
| 12 |   | bi2.04 248 | 
. . . . . 6
⊢ ((𝑥 ≠ 1 → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 = 𝐴)) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴))) | 
| 13 | 11, 12 | bitri 184 | 
. . . . 5
⊢ (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴))) | 
| 14 | 10, 13 | bitr4di 198 | 
. . . 4
⊢ (𝑥 ∈ ℕ → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) | 
| 15 | 14 | adantl 277 | 
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) | 
| 16 |   | nngt1ne1 9025 | 
. . . . . . 7
⊢ (𝑥 ∈ ℕ → (1 <
𝑥 ↔ 𝑥 ≠ 1)) | 
| 17 | 16 | adantl 277 | 
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (1 <
𝑥 ↔ 𝑥 ≠ 1)) | 
| 18 | 17 | anbi1d 465 | 
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 <
𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ))) | 
| 19 |   | nnz 9345 | 
. . . . . . . . 9
⊢ ((𝐴 / 𝑥) ∈ ℕ → (𝐴 / 𝑥) ∈ ℤ) | 
| 20 |   | nnre 8997 | 
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℝ) | 
| 21 |   | gtndiv 9421 | 
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ ∧ 𝐴 < 𝑥) → ¬ (𝐴 / 𝑥) ∈ ℤ) | 
| 22 | 21 | 3expia 1207 | 
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝑥 → ¬ (𝐴 / 𝑥) ∈ ℤ)) | 
| 23 | 20, 22 | sylan 283 | 
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝑥 → ¬ (𝐴 / 𝑥) ∈ ℤ)) | 
| 24 | 23 | con2d 625 | 
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → ¬ 𝐴 < 𝑥)) | 
| 25 |   | nnre 8997 | 
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) | 
| 26 |   | lenlt 8102 | 
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) | 
| 27 | 20, 25, 26 | syl2an 289 | 
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝑥 ≤ 𝐴 ↔ ¬ 𝐴 < 𝑥)) | 
| 28 | 24, 27 | sylibrd 169 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → 𝑥 ≤ 𝐴)) | 
| 29 | 28 | ancoms 268 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → 𝑥 ≤ 𝐴)) | 
| 30 | 19, 29 | syl5 32 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 ≤ 𝐴)) | 
| 31 | 30 | pm4.71rd 394 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ ↔ (𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))) | 
| 32 | 31 | anbi2d 464 | 
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 <
𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ (𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))) | 
| 33 |   | 3anass 984 | 
. . . . . 6
⊢ ((1 <
𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ (𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))) | 
| 34 | 32, 33 | bitr4di 198 | 
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 <
𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))) | 
| 35 | 18, 34 | bitr3d 190 | 
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))) | 
| 36 | 35 | imbi1d 231 | 
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) | 
| 37 | 15, 36 | bitrd 188 | 
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) | 
| 38 | 37 | ralbidva 2493 | 
1
⊢ (𝐴 ∈ ℕ →
(∀𝑥 ∈ ℕ
((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥 ∧ 𝑥 ≤ 𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴))) |