Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex1 GIF version

Theorem bdinex1 14736
Description: Bounded version of inex1 4139. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdinex1.bd BOUNDED 𝐵
bdinex1.1 𝐴 ∈ V
Assertion
Ref Expression
bdinex1 (𝐴𝐵) ∈ V

Proof of Theorem bdinex1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdinex1.1 . . . 4 𝐴 ∈ V
2 bdinex1.bd . . . . . 6 BOUNDED 𝐵
32bdeli 14683 . . . . 5 BOUNDED 𝑦𝐵
43bdzfauscl 14727 . . . 4 (𝐴 ∈ V → ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵)))
51, 4ax-mp 5 . . 3 𝑥𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵))
6 dfcleq 2171 . . . . 5 (𝑥 = (𝐴𝐵) ↔ ∀𝑦(𝑦𝑥𝑦 ∈ (𝐴𝐵)))
7 elin 3320 . . . . . . 7 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
87bibi2i 227 . . . . . 6 ((𝑦𝑥𝑦 ∈ (𝐴𝐵)) ↔ (𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵)))
98albii 1470 . . . . 5 (∀𝑦(𝑦𝑥𝑦 ∈ (𝐴𝐵)) ↔ ∀𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵)))
106, 9bitri 184 . . . 4 (𝑥 = (𝐴𝐵) ↔ ∀𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵)))
1110exbii 1605 . . 3 (∃𝑥 𝑥 = (𝐴𝐵) ↔ ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵)))
125, 11mpbir 146 . 2 𝑥 𝑥 = (𝐴𝐵)
1312issetri 2748 1 (𝐴𝐵) ∈ V
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1351   = wceq 1353  wex 1492  wcel 2148  Vcvv 2739  cin 3130  BOUNDED wbdc 14677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-bdsep 14721
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-bdc 14678
This theorem is referenced by:  bdinex2  14737  bdinex1g  14738  bdpeano5  14780
  Copyright terms: Public domain W3C validator