Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdinex1 GIF version

Theorem bdinex1 13781
Description: Bounded version of inex1 4116. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bdinex1.bd BOUNDED 𝐵
bdinex1.1 𝐴 ∈ V
Assertion
Ref Expression
bdinex1 (𝐴𝐵) ∈ V

Proof of Theorem bdinex1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bdinex1.1 . . . 4 𝐴 ∈ V
2 bdinex1.bd . . . . . 6 BOUNDED 𝐵
32bdeli 13728 . . . . 5 BOUNDED 𝑦𝐵
43bdzfauscl 13772 . . . 4 (𝐴 ∈ V → ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵)))
51, 4ax-mp 5 . . 3 𝑥𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵))
6 dfcleq 2159 . . . . 5 (𝑥 = (𝐴𝐵) ↔ ∀𝑦(𝑦𝑥𝑦 ∈ (𝐴𝐵)))
7 elin 3305 . . . . . . 7 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
87bibi2i 226 . . . . . 6 ((𝑦𝑥𝑦 ∈ (𝐴𝐵)) ↔ (𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵)))
98albii 1458 . . . . 5 (∀𝑦(𝑦𝑥𝑦 ∈ (𝐴𝐵)) ↔ ∀𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵)))
106, 9bitri 183 . . . 4 (𝑥 = (𝐴𝐵) ↔ ∀𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵)))
1110exbii 1593 . . 3 (∃𝑥 𝑥 = (𝐴𝐵) ↔ ∃𝑥𝑦(𝑦𝑥 ↔ (𝑦𝐴𝑦𝐵)))
125, 11mpbir 145 . 2 𝑥 𝑥 = (𝐴𝐵)
1312issetri 2735 1 (𝐴𝐵) ∈ V
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wal 1341   = wceq 1343  wex 1480  wcel 2136  Vcvv 2726  cin 3115  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-bdsep 13766
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-bdc 13723
This theorem is referenced by:  bdinex2  13782  bdinex1g  13783  bdpeano5  13825
  Copyright terms: Public domain W3C validator