ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnq0mo GIF version

Theorem addnq0mo 7219
Description: There is at most one result from adding nonnegative fractions. (Contributed by Jim Kingdon, 23-Nov-2019.)
Assertion
Ref Expression
addnq0mo ((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ))
Distinct variable groups:   𝑡,𝐴,𝑢,𝑣,𝑤,𝑧   𝑡,𝐵,𝑢,𝑣,𝑤,𝑧

Proof of Theorem addnq0mo
Dummy variables 𝑓 𝑔 𝑞 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enq0er 7207 . . . . . . . . . . . . . 14 ~Q0 Er (ω × N)
21a1i 9 . . . . . . . . . . . . 13 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 ))) → ~Q0 Er (ω × N))
3 nnnq0lem1 7218 . . . . . . . . . . . . . 14 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 ))) → ((((𝑤 ∈ ω ∧ 𝑣N) ∧ (𝑠 ∈ ω ∧ 𝑓N)) ∧ ((𝑢 ∈ ω ∧ 𝑡N) ∧ (𝑔 ∈ ω ∧ N))) ∧ ((𝑤 ·o 𝑓) = (𝑣 ·o 𝑠) ∧ (𝑢 ·o ) = (𝑡 ·o 𝑔))))
4 addcmpblnq0 7215 . . . . . . . . . . . . . . 15 ((((𝑤 ∈ ω ∧ 𝑣N) ∧ (𝑠 ∈ ω ∧ 𝑓N)) ∧ ((𝑢 ∈ ω ∧ 𝑡N) ∧ (𝑔 ∈ ω ∧ N))) → (((𝑤 ·o 𝑓) = (𝑣 ·o 𝑠) ∧ (𝑢 ·o ) = (𝑡 ·o 𝑔)) → ⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩ ~Q0 ⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩))
54imp 123 . . . . . . . . . . . . . 14 (((((𝑤 ∈ ω ∧ 𝑣N) ∧ (𝑠 ∈ ω ∧ 𝑓N)) ∧ ((𝑢 ∈ ω ∧ 𝑡N) ∧ (𝑔 ∈ ω ∧ N))) ∧ ((𝑤 ·o 𝑓) = (𝑣 ·o 𝑠) ∧ (𝑢 ·o ) = (𝑡 ·o 𝑔))) → ⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩ ~Q0 ⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩)
63, 5syl 14 . . . . . . . . . . . . 13 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 ))) → ⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩ ~Q0 ⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩)
72, 6erthi 6441 . . . . . . . . . . . 12 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 ))) → [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 )
8 simprlr 510 . . . . . . . . . . . 12 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 ))) → 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )
9 simprrr 512 . . . . . . . . . . . 12 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 ))) → 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 )
107, 8, 93eqtr4d 2158 . . . . . . . . . . 11 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 ))) → 𝑧 = 𝑞)
1110expr 370 . . . . . . . . . 10 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )) → (((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 ) → 𝑧 = 𝑞))
1211exlimdvv 1851 . . . . . . . . 9 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )) → (∃𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 ) → 𝑧 = 𝑞))
1312exlimdvv 1851 . . . . . . . 8 (((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) ∧ ((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 ) → 𝑧 = 𝑞))
1413ex 114 . . . . . . 7 ((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 ) → 𝑧 = 𝑞)))
1514exlimdvv 1851 . . . . . 6 ((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → (∃𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 ) → 𝑧 = 𝑞)))
1615exlimdvv 1851 . . . . 5 ((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) → (∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 ) → 𝑧 = 𝑞)))
1716impd 252 . . . 4 ((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 )) → 𝑧 = 𝑞))
1817alrimivv 1829 . . 3 ((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 )) → 𝑧 = 𝑞))
19 opeq12 3675 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → ⟨𝑤, 𝑣⟩ = ⟨𝑠, 𝑓⟩)
2019eceq1d 6431 . . . . . . . . . 10 ((𝑤 = 𝑠𝑣 = 𝑓) → [⟨𝑤, 𝑣⟩] ~Q0 = [⟨𝑠, 𝑓⟩] ~Q0 )
2120eqeq2d 2127 . . . . . . . . 9 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐴 = [⟨𝑠, 𝑓⟩] ~Q0 ))
2221anbi1d 458 . . . . . . . 8 ((𝑤 = 𝑠𝑣 = 𝑓) → ((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ↔ (𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 )))
23 simpl 108 . . . . . . . . . . . . 13 ((𝑤 = 𝑠𝑣 = 𝑓) → 𝑤 = 𝑠)
2423oveq1d 5755 . . . . . . . . . . . 12 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑤 ·o 𝑡) = (𝑠 ·o 𝑡))
25 simpr 109 . . . . . . . . . . . . 13 ((𝑤 = 𝑠𝑣 = 𝑓) → 𝑣 = 𝑓)
2625oveq1d 5755 . . . . . . . . . . . 12 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑣 ·o 𝑢) = (𝑓 ·o 𝑢))
2724, 26oveq12d 5758 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → ((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)) = ((𝑠 ·o 𝑡) +o (𝑓 ·o 𝑢)))
2825oveq1d 5755 . . . . . . . . . . 11 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑣 ·o 𝑡) = (𝑓 ·o 𝑡))
2927, 28opeq12d 3681 . . . . . . . . . 10 ((𝑤 = 𝑠𝑣 = 𝑓) → ⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩ = ⟨((𝑠 ·o 𝑡) +o (𝑓 ·o 𝑢)), (𝑓 ·o 𝑡)⟩)
3029eceq1d 6431 . . . . . . . . 9 ((𝑤 = 𝑠𝑣 = 𝑓) → [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 = [⟨((𝑠 ·o 𝑡) +o (𝑓 ·o 𝑢)), (𝑓 ·o 𝑡)⟩] ~Q0 )
3130eqeq2d 2127 . . . . . . . 8 ((𝑤 = 𝑠𝑣 = 𝑓) → (𝑞 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0𝑞 = [⟨((𝑠 ·o 𝑡) +o (𝑓 ·o 𝑢)), (𝑓 ·o 𝑡)⟩] ~Q0 ))
3222, 31anbi12d 462 . . . . . . 7 ((𝑤 = 𝑠𝑣 = 𝑓) → (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ↔ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o 𝑡) +o (𝑓 ·o 𝑢)), (𝑓 ·o 𝑡)⟩] ~Q0 )))
33 opeq12 3675 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → ⟨𝑢, 𝑡⟩ = ⟨𝑔, ⟩)
3433eceq1d 6431 . . . . . . . . . 10 ((𝑢 = 𝑔𝑡 = ) → [⟨𝑢, 𝑡⟩] ~Q0 = [⟨𝑔, ⟩] ~Q0 )
3534eqeq2d 2127 . . . . . . . . 9 ((𝑢 = 𝑔𝑡 = ) → (𝐵 = [⟨𝑢, 𝑡⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ))
3635anbi2d 457 . . . . . . . 8 ((𝑢 = 𝑔𝑡 = ) → ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ↔ (𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 )))
37 simpr 109 . . . . . . . . . . . . 13 ((𝑢 = 𝑔𝑡 = ) → 𝑡 = )
3837oveq2d 5756 . . . . . . . . . . . 12 ((𝑢 = 𝑔𝑡 = ) → (𝑠 ·o 𝑡) = (𝑠 ·o ))
39 simpl 108 . . . . . . . . . . . . 13 ((𝑢 = 𝑔𝑡 = ) → 𝑢 = 𝑔)
4039oveq2d 5756 . . . . . . . . . . . 12 ((𝑢 = 𝑔𝑡 = ) → (𝑓 ·o 𝑢) = (𝑓 ·o 𝑔))
4138, 40oveq12d 5758 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → ((𝑠 ·o 𝑡) +o (𝑓 ·o 𝑢)) = ((𝑠 ·o ) +o (𝑓 ·o 𝑔)))
4237oveq2d 5756 . . . . . . . . . . 11 ((𝑢 = 𝑔𝑡 = ) → (𝑓 ·o 𝑡) = (𝑓 ·o ))
4341, 42opeq12d 3681 . . . . . . . . . 10 ((𝑢 = 𝑔𝑡 = ) → ⟨((𝑠 ·o 𝑡) +o (𝑓 ·o 𝑢)), (𝑓 ·o 𝑡)⟩ = ⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩)
4443eceq1d 6431 . . . . . . . . 9 ((𝑢 = 𝑔𝑡 = ) → [⟨((𝑠 ·o 𝑡) +o (𝑓 ·o 𝑢)), (𝑓 ·o 𝑡)⟩] ~Q0 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 )
4544eqeq2d 2127 . . . . . . . 8 ((𝑢 = 𝑔𝑡 = ) → (𝑞 = [⟨((𝑠 ·o 𝑡) +o (𝑓 ·o 𝑢)), (𝑓 ·o 𝑡)⟩] ~Q0𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 ))
4636, 45anbi12d 462 . . . . . . 7 ((𝑢 = 𝑔𝑡 = ) → (((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o 𝑡) +o (𝑓 ·o 𝑢)), (𝑓 ·o 𝑡)⟩] ~Q0 ) ↔ ((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 )))
4732, 46cbvex4v 1880 . . . . . 6 (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ↔ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 ))
4847anbi2i 450 . . . . 5 ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )) ↔ (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 )))
4948imbi1i 237 . . . 4 (((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )) → 𝑧 = 𝑞) ↔ ((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 )) → 𝑧 = 𝑞))
50492albii 1430 . . 3 (∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )) → 𝑧 = 𝑞) ↔ ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ∃𝑠𝑓𝑔((𝐴 = [⟨𝑠, 𝑓⟩] ~Q0𝐵 = [⟨𝑔, ⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑠 ·o ) +o (𝑓 ·o 𝑔)), (𝑓 ·o )⟩] ~Q0 )) → 𝑧 = 𝑞))
5118, 50sylibr 133 . 2 ((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )) → 𝑧 = 𝑞))
52 eqeq1 2122 . . . . 5 (𝑧 = 𝑞 → (𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0𝑞 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ))
5352anbi2d 457 . . . 4 (𝑧 = 𝑞 → (((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ↔ ((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )))
54534exbidv 1824 . . 3 (𝑧 = 𝑞 → (∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ↔ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )))
5554mo4 2036 . 2 (∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ↔ ∀𝑧𝑞((∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ) ∧ ∃𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑞 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 )) → 𝑧 = 𝑞))
5651, 55sylibr 133 1 ((𝐴 ∈ ((ω × N) / ~Q0 ) ∧ 𝐵 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝐴 = [⟨𝑤, 𝑣⟩] ~Q0𝐵 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·o 𝑡) +o (𝑣 ·o 𝑢)), (𝑣 ·o 𝑡)⟩] ~Q0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1312   = wceq 1314  wex 1451  wcel 1463  ∃*wmo 1976  cop 3498   class class class wbr 3897  ωcom 4472   × cxp 4505  (class class class)co 5740   +o coa 6276   ·o comu 6277   Er wer 6392  [cec 6393   / cqs 6394  Ncnpi 7044   ~Q0 ceq0 7058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-oadd 6283  df-omul 6284  df-er 6395  df-ec 6397  df-qs 6401  df-ni 7076  df-mi 7078  df-enq0 7196
This theorem is referenced by:  addnnnq0  7221
  Copyright terms: Public domain W3C validator