![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvrexv2 | GIF version |
Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
cbvralv2.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
cbvralv2.2 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
cbvrexv2 | ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2332 | . 2 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2332 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | nfv 1539 | . 2 ⊢ Ⅎ𝑦𝜓 | |
4 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜒 | |
5 | cbvralv2.2 | . 2 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
6 | cbvralv2.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
7 | 1, 2, 3, 4, 5, 6 | cbvrexcsf 3135 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wrex 2469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-sbc 2978 df-csb 3073 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |