| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2vd | GIF version | ||
| Description: Deduction version of 2-variable restricted specialization, using implicit substitution. Notice that the class 𝐷 for the second set variable 𝑦 may depend on the first set variable 𝑥. (Contributed by AV, 29-Mar-2021.) |
| Ref | Expression |
|---|---|
| rspc2vd.a | ⊢ (𝑥 = 𝐴 → (𝜃 ↔ 𝜒)) |
| rspc2vd.b | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
| rspc2vd.c | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| rspc2vd.d | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐸) |
| rspc2vd.e | ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
| Ref | Expression |
|---|---|
| rspc2vd | ⊢ (𝜑 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜃 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspc2vd.e | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐸) | |
| 2 | rspc2vd.c | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 3 | rspc2vd.d | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐸) | |
| 4 | 2, 3 | csbied 3142 | . . 3 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐷 = 𝐸) |
| 5 | 1, 4 | eleqtrrd 2286 | . 2 ⊢ (𝜑 → 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐷) |
| 6 | nfcsb1v 3128 | . . . . 5 ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐷 | |
| 7 | nfv 1552 | . . . . 5 ⊢ Ⅎ𝑥𝜒 | |
| 8 | 6, 7 | nfralw 2544 | . . . 4 ⊢ Ⅎ𝑥∀𝑦 ∈ ⦋ 𝐴 / 𝑥⦌𝐷𝜒 |
| 9 | csbeq1a 3104 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐷 = ⦋𝐴 / 𝑥⦌𝐷) | |
| 10 | rspc2vd.a | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜃 ↔ 𝜒)) | |
| 11 | 9, 10 | raleqbidv 2719 | . . . 4 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐷 𝜃 ↔ ∀𝑦 ∈ ⦋ 𝐴 / 𝑥⦌𝐷𝜒)) |
| 12 | 8, 11 | rspc 2873 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜃 → ∀𝑦 ∈ ⦋ 𝐴 / 𝑥⦌𝐷𝜒)) |
| 13 | 2, 12 | syl 14 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜃 → ∀𝑦 ∈ ⦋ 𝐴 / 𝑥⦌𝐷𝜒)) |
| 14 | rspc2vd.b | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
| 15 | 14 | rspcv 2875 | . 2 ⊢ (𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐷 → (∀𝑦 ∈ ⦋ 𝐴 / 𝑥⦌𝐷𝜒 → 𝜓)) |
| 16 | 5, 13, 15 | sylsyld 58 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜃 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⦋csb 3095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-sbc 3001 df-csb 3096 |
| This theorem is referenced by: insubm 13367 |
| Copyright terms: Public domain | W3C validator |