ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrexcsf GIF version

Theorem cbvrexcsf 3168
Description: A more general version of cbvrexf 2737 that has no distinct variable restrictions. Changes bound variables using implicit substitution. (Contributed by Andrew Salmon, 13-Jul-2011.) (Proof shortened by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
cbvralcsf.1 𝑦𝐴
cbvralcsf.2 𝑥𝐵
cbvralcsf.3 𝑦𝜑
cbvralcsf.4 𝑥𝜓
cbvralcsf.5 (𝑥 = 𝑦𝐴 = 𝐵)
cbvralcsf.6 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrexcsf (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐵 𝜓)

Proof of Theorem cbvrexcsf
Dummy variables 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1554 . . . 4 𝑧(𝑥𝐴𝜑)
2 nfcsb1v 3137 . . . . . 6 𝑥𝑧 / 𝑥𝐴
32nfcri 2346 . . . . 5 𝑥 𝑧𝑧 / 𝑥𝐴
4 nfsbc1v 3027 . . . . 5 𝑥[𝑧 / 𝑥]𝜑
53, 4nfan 1591 . . . 4 𝑥(𝑧𝑧 / 𝑥𝐴[𝑧 / 𝑥]𝜑)
6 id 19 . . . . . 6 (𝑥 = 𝑧𝑥 = 𝑧)
7 csbeq1a 3113 . . . . . 6 (𝑥 = 𝑧𝐴 = 𝑧 / 𝑥𝐴)
86, 7eleq12d 2280 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝑧 / 𝑥𝐴))
9 sbceq1a 3018 . . . . 5 (𝑥 = 𝑧 → (𝜑[𝑧 / 𝑥]𝜑))
108, 9anbi12d 473 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝜑) ↔ (𝑧𝑧 / 𝑥𝐴[𝑧 / 𝑥]𝜑)))
111, 5, 10cbvex 1782 . . 3 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑧(𝑧𝑧 / 𝑥𝐴[𝑧 / 𝑥]𝜑))
12 nfcv 2352 . . . . . . 7 𝑦𝑧
13 cbvralcsf.1 . . . . . . 7 𝑦𝐴
1412, 13nfcsb 3142 . . . . . 6 𝑦𝑧 / 𝑥𝐴
1514nfcri 2346 . . . . 5 𝑦 𝑧𝑧 / 𝑥𝐴
16 cbvralcsf.3 . . . . . 6 𝑦𝜑
1712, 16nfsbc 3029 . . . . 5 𝑦[𝑧 / 𝑥]𝜑
1815, 17nfan 1591 . . . 4 𝑦(𝑧𝑧 / 𝑥𝐴[𝑧 / 𝑥]𝜑)
19 nfv 1554 . . . 4 𝑧(𝑦𝐵𝜓)
20 id 19 . . . . . 6 (𝑧 = 𝑦𝑧 = 𝑦)
21 csbeq1 3107 . . . . . . 7 (𝑧 = 𝑦𝑧 / 𝑥𝐴 = 𝑦 / 𝑥𝐴)
22 df-csb 3105 . . . . . . . 8 𝑦 / 𝑥𝐴 = {𝑣[𝑦 / 𝑥]𝑣𝐴}
23 cbvralcsf.2 . . . . . . . . . . . 12 𝑥𝐵
2423nfcri 2346 . . . . . . . . . . 11 𝑥 𝑣𝐵
25 cbvralcsf.5 . . . . . . . . . . . 12 (𝑥 = 𝑦𝐴 = 𝐵)
2625eleq2d 2279 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑣𝐴𝑣𝐵))
2724, 26sbie 1817 . . . . . . . . . 10 ([𝑦 / 𝑥]𝑣𝐴𝑣𝐵)
28 sbsbc 3012 . . . . . . . . . 10 ([𝑦 / 𝑥]𝑣𝐴[𝑦 / 𝑥]𝑣𝐴)
2927, 28bitr3i 186 . . . . . . . . 9 (𝑣𝐵[𝑦 / 𝑥]𝑣𝐴)
3029abbi2i 2324 . . . . . . . 8 𝐵 = {𝑣[𝑦 / 𝑥]𝑣𝐴}
3122, 30eqtr4i 2233 . . . . . . 7 𝑦 / 𝑥𝐴 = 𝐵
3221, 31eqtrdi 2258 . . . . . 6 (𝑧 = 𝑦𝑧 / 𝑥𝐴 = 𝐵)
3320, 32eleq12d 2280 . . . . 5 (𝑧 = 𝑦 → (𝑧𝑧 / 𝑥𝐴𝑦𝐵))
34 dfsbcq 3010 . . . . . 6 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
35 sbsbc 3012 . . . . . . 7 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
36 cbvralcsf.4 . . . . . . . 8 𝑥𝜓
37 cbvralcsf.6 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜓))
3836, 37sbie 1817 . . . . . . 7 ([𝑦 / 𝑥]𝜑𝜓)
3935, 38bitr3i 186 . . . . . 6 ([𝑦 / 𝑥]𝜑𝜓)
4034, 39bitrdi 196 . . . . 5 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
4133, 40anbi12d 473 . . . 4 (𝑧 = 𝑦 → ((𝑧𝑧 / 𝑥𝐴[𝑧 / 𝑥]𝜑) ↔ (𝑦𝐵𝜓)))
4218, 19, 41cbvex 1782 . . 3 (∃𝑧(𝑧𝑧 / 𝑥𝐴[𝑧 / 𝑥]𝜑) ↔ ∃𝑦(𝑦𝐵𝜓))
4311, 42bitri 184 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ ∃𝑦(𝑦𝐵𝜓))
44 df-rex 2494 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
45 df-rex 2494 . 2 (∃𝑦𝐵 𝜓 ↔ ∃𝑦(𝑦𝐵𝜓))
4643, 44, 453bitr4i 212 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wnf 1486  wex 1518  [wsb 1788  wcel 2180  {cab 2195  wnfc 2339  wrex 2489  [wsbc 3008  csb 3104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-sbc 3009  df-csb 3105
This theorem is referenced by:  cbvrexv2  3172
  Copyright terms: Public domain W3C validator