![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tz6.12f | GIF version |
Description: Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.) |
Ref | Expression |
---|---|
tz6.12f.1 | ⊢ Ⅎ𝑦𝐹 |
Ref | Expression |
---|---|
tz6.12f | ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 3805 | . . . . 5 ⊢ (𝑧 = 𝑦 → 〈𝐴, 𝑧〉 = 〈𝐴, 𝑦〉) | |
2 | 1 | eleq1d 2262 | . . . 4 ⊢ (𝑧 = 𝑦 → (〈𝐴, 𝑧〉 ∈ 𝐹 ↔ 〈𝐴, 𝑦〉 ∈ 𝐹)) |
3 | tz6.12f.1 | . . . . . . 7 ⊢ Ⅎ𝑦𝐹 | |
4 | 3 | nfel2 2349 | . . . . . 6 ⊢ Ⅎ𝑦〈𝐴, 𝑧〉 ∈ 𝐹 |
5 | nfv 1539 | . . . . . 6 ⊢ Ⅎ𝑧〈𝐴, 𝑦〉 ∈ 𝐹 | |
6 | 4, 5, 2 | cbveu 2066 | . . . . 5 ⊢ (∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹 ↔ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) |
7 | 6 | a1i 9 | . . . 4 ⊢ (𝑧 = 𝑦 → (∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹 ↔ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹)) |
8 | 2, 7 | anbi12d 473 | . . 3 ⊢ (𝑧 = 𝑦 → ((〈𝐴, 𝑧〉 ∈ 𝐹 ∧ ∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹) ↔ (〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹))) |
9 | eqeq2 2203 | . . 3 ⊢ (𝑧 = 𝑦 → ((𝐹‘𝐴) = 𝑧 ↔ (𝐹‘𝐴) = 𝑦)) | |
10 | 8, 9 | imbi12d 234 | . 2 ⊢ (𝑧 = 𝑦 → (((〈𝐴, 𝑧〉 ∈ 𝐹 ∧ ∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑧) ↔ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦))) |
11 | tz6.12 5582 | . 2 ⊢ ((〈𝐴, 𝑧〉 ∈ 𝐹 ∧ ∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑧) | |
12 | 10, 11 | chvarv 1953 | 1 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃!weu 2042 ∈ wcel 2164 Ⅎwnfc 2323 〈cop 3621 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |