![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tz6.12f | GIF version |
Description: Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.) |
Ref | Expression |
---|---|
tz6.12f.1 | ⊢ Ⅎ𝑦𝐹 |
Ref | Expression |
---|---|
tz6.12f | ⊢ ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq2 3781 | . . . . 5 ⊢ (𝑧 = 𝑦 → ⟨𝐴, 𝑧⟩ = ⟨𝐴, 𝑦⟩) | |
2 | 1 | eleq1d 2246 | . . . 4 ⊢ (𝑧 = 𝑦 → (⟨𝐴, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹)) |
3 | tz6.12f.1 | . . . . . . 7 ⊢ Ⅎ𝑦𝐹 | |
4 | 3 | nfel2 2332 | . . . . . 6 ⊢ Ⅎ𝑦⟨𝐴, 𝑧⟩ ∈ 𝐹 |
5 | nfv 1528 | . . . . . 6 ⊢ Ⅎ𝑧⟨𝐴, 𝑦⟩ ∈ 𝐹 | |
6 | 4, 5, 2 | cbveu 2050 | . . . . 5 ⊢ (∃!𝑧⟨𝐴, 𝑧⟩ ∈ 𝐹 ↔ ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹) |
7 | 6 | a1i 9 | . . . 4 ⊢ (𝑧 = 𝑦 → (∃!𝑧⟨𝐴, 𝑧⟩ ∈ 𝐹 ↔ ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹)) |
8 | 2, 7 | anbi12d 473 | . . 3 ⊢ (𝑧 = 𝑦 → ((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧⟨𝐴, 𝑧⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹))) |
9 | eqeq2 2187 | . . 3 ⊢ (𝑧 = 𝑦 → ((𝐹‘𝐴) = 𝑧 ↔ (𝐹‘𝐴) = 𝑦)) | |
10 | 8, 9 | imbi12d 234 | . 2 ⊢ (𝑧 = 𝑦 → (((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧⟨𝐴, 𝑧⟩ ∈ 𝐹) → (𝐹‘𝐴) = 𝑧) ↔ ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹‘𝐴) = 𝑦))) |
11 | tz6.12 5545 | . 2 ⊢ ((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧⟨𝐴, 𝑧⟩ ∈ 𝐹) → (𝐹‘𝐴) = 𝑧) | |
12 | 10, 11 | chvarv 1937 | 1 ⊢ ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦⟨𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∃!weu 2026 ∈ wcel 2148 Ⅎwnfc 2306 ⟨cop 3597 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-iota 5180 df-fv 5226 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |