ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12f GIF version

Theorem tz6.12f 5604
Description: Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.)
Hypothesis
Ref Expression
tz6.12f.1 𝑦𝐹
Assertion
Ref Expression
tz6.12f ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
Distinct variable group:   𝑦,𝐴
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem tz6.12f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 opeq2 3819 . . . . 5 (𝑧 = 𝑦 → ⟨𝐴, 𝑧⟩ = ⟨𝐴, 𝑦⟩)
21eleq1d 2273 . . . 4 (𝑧 = 𝑦 → (⟨𝐴, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹))
3 tz6.12f.1 . . . . . . 7 𝑦𝐹
43nfel2 2360 . . . . . 6 𝑦𝐴, 𝑧⟩ ∈ 𝐹
5 nfv 1550 . . . . . 6 𝑧𝐴, 𝑦⟩ ∈ 𝐹
64, 5, 2cbveu 2077 . . . . 5 (∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹 ↔ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)
76a1i 9 . . . 4 (𝑧 = 𝑦 → (∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹 ↔ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹))
82, 7anbi12d 473 . . 3 (𝑧 = 𝑦 → ((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹) ↔ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)))
9 eqeq2 2214 . . 3 (𝑧 = 𝑦 → ((𝐹𝐴) = 𝑧 ↔ (𝐹𝐴) = 𝑦))
108, 9imbi12d 234 . 2 (𝑧 = 𝑦 → (((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑧) ↔ ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)))
11 tz6.12 5603 . 2 ((⟨𝐴, 𝑧⟩ ∈ 𝐹 ∧ ∃!𝑧𝐴, 𝑧⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑧)
1210, 11chvarv 1964 1 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹𝐴) = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  ∃!weu 2053  wcel 2175  wnfc 2334  cop 3635  cfv 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5231  df-fv 5278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator