| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tz6.12f | GIF version | ||
| Description: Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.) |
| Ref | Expression |
|---|---|
| tz6.12f.1 | ⊢ Ⅎ𝑦𝐹 |
| Ref | Expression |
|---|---|
| tz6.12f | ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq2 3834 | . . . . 5 ⊢ (𝑧 = 𝑦 → 〈𝐴, 𝑧〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | eleq1d 2276 | . . . 4 ⊢ (𝑧 = 𝑦 → (〈𝐴, 𝑧〉 ∈ 𝐹 ↔ 〈𝐴, 𝑦〉 ∈ 𝐹)) |
| 3 | tz6.12f.1 | . . . . . . 7 ⊢ Ⅎ𝑦𝐹 | |
| 4 | 3 | nfel2 2363 | . . . . . 6 ⊢ Ⅎ𝑦〈𝐴, 𝑧〉 ∈ 𝐹 |
| 5 | nfv 1552 | . . . . . 6 ⊢ Ⅎ𝑧〈𝐴, 𝑦〉 ∈ 𝐹 | |
| 6 | 4, 5, 2 | cbveu 2079 | . . . . 5 ⊢ (∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹 ↔ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (𝑧 = 𝑦 → (∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹 ↔ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹)) |
| 8 | 2, 7 | anbi12d 473 | . . 3 ⊢ (𝑧 = 𝑦 → ((〈𝐴, 𝑧〉 ∈ 𝐹 ∧ ∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹) ↔ (〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹))) |
| 9 | eqeq2 2217 | . . 3 ⊢ (𝑧 = 𝑦 → ((𝐹‘𝐴) = 𝑧 ↔ (𝐹‘𝐴) = 𝑦)) | |
| 10 | 8, 9 | imbi12d 234 | . 2 ⊢ (𝑧 = 𝑦 → (((〈𝐴, 𝑧〉 ∈ 𝐹 ∧ ∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑧) ↔ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦))) |
| 11 | tz6.12 5627 | . 2 ⊢ ((〈𝐴, 𝑧〉 ∈ 𝐹 ∧ ∃!𝑧〈𝐴, 𝑧〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑧) | |
| 12 | 10, 11 | chvarv 1966 | 1 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∃!weu 2055 ∈ wcel 2178 Ⅎwnfc 2337 〈cop 3646 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |