ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltordlem GIF version

Theorem ltordlem 8554
Description: Lemma for eqord1 8555. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1 (𝑥 = 𝑦𝐴 = 𝐵)
ltord.2 (𝑥 = 𝐶𝐴 = 𝑀)
ltord.3 (𝑥 = 𝐷𝐴 = 𝑁)
ltord.4 𝑆 ⊆ ℝ
ltord.5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
ltord.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
Assertion
Ref Expression
ltordlem ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑀 < 𝑁))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem ltordlem
StepHypRef Expression
1 ltord.6 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
21ralrimivva 2587 . 2 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦𝐴 < 𝐵))
3 breq1 4046 . . . 4 (𝑥 = 𝐶 → (𝑥 < 𝑦𝐶 < 𝑦))
4 ltord.2 . . . . 5 (𝑥 = 𝐶𝐴 = 𝑀)
54breq1d 4053 . . . 4 (𝑥 = 𝐶 → (𝐴 < 𝐵𝑀 < 𝐵))
63, 5imbi12d 234 . . 3 (𝑥 = 𝐶 → ((𝑥 < 𝑦𝐴 < 𝐵) ↔ (𝐶 < 𝑦𝑀 < 𝐵)))
7 breq2 4047 . . . 4 (𝑦 = 𝐷 → (𝐶 < 𝑦𝐶 < 𝐷))
8 eqeq1 2211 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 𝐷𝑦 = 𝐷))
9 ltord.1 . . . . . . . 8 (𝑥 = 𝑦𝐴 = 𝐵)
109eqeq1d 2213 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 = 𝑁𝐵 = 𝑁))
118, 10imbi12d 234 . . . . . 6 (𝑥 = 𝑦 → ((𝑥 = 𝐷𝐴 = 𝑁) ↔ (𝑦 = 𝐷𝐵 = 𝑁)))
12 ltord.3 . . . . . 6 (𝑥 = 𝐷𝐴 = 𝑁)
1311, 12chvarv 1964 . . . . 5 (𝑦 = 𝐷𝐵 = 𝑁)
1413breq2d 4055 . . . 4 (𝑦 = 𝐷 → (𝑀 < 𝐵𝑀 < 𝑁))
157, 14imbi12d 234 . . 3 (𝑦 = 𝐷 → ((𝐶 < 𝑦𝑀 < 𝐵) ↔ (𝐶 < 𝐷𝑀 < 𝑁)))
166, 15rspc2v 2889 . 2 ((𝐶𝑆𝐷𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥 < 𝑦𝐴 < 𝐵) → (𝐶 < 𝐷𝑀 < 𝑁)))
172, 16mpan9 281 1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑀 < 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  wral 2483  wss 3165   class class class wbr 4043  cr 7923   < clt 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044
This theorem is referenced by:  eqord1  8555
  Copyright terms: Public domain W3C validator