Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > strcoll2 | GIF version |
Description: Version of ax-strcoll 14017 with one disjoint variable condition removed and without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.) |
Ref | Expression |
---|---|
strcoll2 | ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 2665 | . . 3 ⊢ (𝑧 = 𝑎 → (∀𝑥 ∈ 𝑧 ∃𝑦𝜑 ↔ ∀𝑥 ∈ 𝑎 ∃𝑦𝜑)) | |
2 | raleq 2665 | . . . . 5 ⊢ (𝑧 = 𝑎 → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑏 𝜑 ↔ ∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑)) | |
3 | rexeq 2666 | . . . . . 6 ⊢ (𝑧 = 𝑎 → (∃𝑥 ∈ 𝑧 𝜑 ↔ ∃𝑥 ∈ 𝑎 𝜑)) | |
4 | 3 | ralbidv 2470 | . . . . 5 ⊢ (𝑧 = 𝑎 → (∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑧 𝜑 ↔ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
5 | 2, 4 | anbi12d 470 | . . . 4 ⊢ (𝑧 = 𝑎 → ((∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑧 𝜑) ↔ (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑))) |
6 | 5 | exbidv 1818 | . . 3 ⊢ (𝑧 = 𝑎 → (∃𝑏(∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑧 𝜑) ↔ ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑))) |
7 | 1, 6 | imbi12d 233 | . 2 ⊢ (𝑧 = 𝑎 → ((∀𝑥 ∈ 𝑧 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑧 𝜑)) ↔ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)))) |
8 | ax-strcoll 14017 | . . 3 ⊢ ∀𝑧(∀𝑥 ∈ 𝑧 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑧 𝜑)) | |
9 | 8 | spi 1529 | . 2 ⊢ (∀𝑥 ∈ 𝑧 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑧 𝜑)) |
10 | 7, 9 | chvarv 1930 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∃wex 1485 ∀wral 2448 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-strcoll 14017 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 |
This theorem is referenced by: strcollnft 14019 strcollnfALT 14021 |
Copyright terms: Public domain | W3C validator |