| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > strcoll2 | GIF version | ||
| Description: Version of ax-strcoll 16369 with one disjoint variable condition removed and without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.) |
| Ref | Expression |
|---|---|
| strcoll2 | ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq 2728 | . . 3 ⊢ (𝑧 = 𝑎 → (∀𝑥 ∈ 𝑧 ∃𝑦𝜑 ↔ ∀𝑥 ∈ 𝑎 ∃𝑦𝜑)) | |
| 2 | raleq 2728 | . . . . 5 ⊢ (𝑧 = 𝑎 → (∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑏 𝜑 ↔ ∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑)) | |
| 3 | rexeq 2729 | . . . . . 6 ⊢ (𝑧 = 𝑎 → (∃𝑥 ∈ 𝑧 𝜑 ↔ ∃𝑥 ∈ 𝑎 𝜑)) | |
| 4 | 3 | ralbidv 2530 | . . . . 5 ⊢ (𝑧 = 𝑎 → (∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑧 𝜑 ↔ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
| 5 | 2, 4 | anbi12d 473 | . . . 4 ⊢ (𝑧 = 𝑎 → ((∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑧 𝜑) ↔ (∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑))) |
| 6 | 5 | exbidv 1871 | . . 3 ⊢ (𝑧 = 𝑎 → (∃𝑏(∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑧 𝜑) ↔ ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑))) |
| 7 | 1, 6 | imbi12d 234 | . 2 ⊢ (𝑧 = 𝑎 → ((∀𝑥 ∈ 𝑧 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑧 𝜑)) ↔ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)))) |
| 8 | ax-strcoll 16369 | . . 3 ⊢ ∀𝑧(∀𝑥 ∈ 𝑧 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑧 𝜑)) | |
| 9 | 8 | spi 1582 | . 2 ⊢ (∀𝑥 ∈ 𝑧 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑧 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑧 𝜑)) |
| 10 | 7, 9 | chvarv 1988 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∃wex 1538 ∀wral 2508 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-strcoll 16369 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: strcollnft 16371 strcollnfALT 16373 |
| Copyright terms: Public domain | W3C validator |