Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  strcoll2 GIF version

Theorem strcoll2 15993
Description: Version of ax-strcoll 15992 with one disjoint variable condition removed and without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.)
Assertion
Ref Expression
strcoll2 (∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))
Distinct variable groups:   𝑎,𝑏,𝑥,𝑦   𝜑,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑎)

Proof of Theorem strcoll2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 raleq 2703 . . 3 (𝑧 = 𝑎 → (∀𝑥𝑧𝑦𝜑 ↔ ∀𝑥𝑎𝑦𝜑))
2 raleq 2703 . . . . 5 (𝑧 = 𝑎 → (∀𝑥𝑧𝑦𝑏 𝜑 ↔ ∀𝑥𝑎𝑦𝑏 𝜑))
3 rexeq 2704 . . . . . 6 (𝑧 = 𝑎 → (∃𝑥𝑧 𝜑 ↔ ∃𝑥𝑎 𝜑))
43ralbidv 2507 . . . . 5 (𝑧 = 𝑎 → (∀𝑦𝑏𝑥𝑧 𝜑 ↔ ∀𝑦𝑏𝑥𝑎 𝜑))
52, 4anbi12d 473 . . . 4 (𝑧 = 𝑎 → ((∀𝑥𝑧𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑧 𝜑) ↔ (∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑)))
65exbidv 1849 . . 3 (𝑧 = 𝑎 → (∃𝑏(∀𝑥𝑧𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑧 𝜑) ↔ ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑)))
71, 6imbi12d 234 . 2 (𝑧 = 𝑎 → ((∀𝑥𝑧𝑦𝜑 → ∃𝑏(∀𝑥𝑧𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑧 𝜑)) ↔ (∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))))
8 ax-strcoll 15992 . . 3 𝑧(∀𝑥𝑧𝑦𝜑 → ∃𝑏(∀𝑥𝑧𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑧 𝜑))
98spi 1560 . 2 (∀𝑥𝑧𝑦𝜑 → ∃𝑏(∀𝑥𝑧𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑧 𝜑))
107, 9chvarv 1966 1 (∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wex 1516  wral 2485  wrex 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-strcoll 15992
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491
This theorem is referenced by:  strcollnft  15994  strcollnfALT  15996
  Copyright terms: Public domain W3C validator