ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snssOLD GIF version

Theorem snssOLD 3719
Description: Obsolete version of snss 3728 as of 1-Jan-2025. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
snssOLD.1 𝐴 ∈ V
Assertion
Ref Expression
snssOLD (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵)

Proof of Theorem snssOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 velsn 3610 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
21imbi1i 238 . . 3 ((𝑥 ∈ {𝐴} → 𝑥𝐵) ↔ (𝑥 = 𝐴𝑥𝐵))
32albii 1470 . 2 (∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵) ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵))
4 dfss2 3145 . 2 ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵))
5 snssOLD.1 . . 3 𝐴 ∈ V
65clel2 2871 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵))
73, 4, 63bitr4ri 213 1 (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351   = wceq 1353  wcel 2148  Vcvv 2738  wss 3130  {csn 3593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-in 3136  df-ss 3143  df-sn 3599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator