ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snssOLD GIF version

Theorem snssOLD 3715
Description: Obsolete version of snss 3724 as of 1-Jan-2025. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
snssOLD.1 𝐴 ∈ V
Assertion
Ref Expression
snssOLD (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵)

Proof of Theorem snssOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 velsn 3606 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
21imbi1i 238 . . 3 ((𝑥 ∈ {𝐴} → 𝑥𝐵) ↔ (𝑥 = 𝐴𝑥𝐵))
32albii 1468 . 2 (∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵) ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵))
4 dfss2 3142 . 2 ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵))
5 snssOLD.1 . . 3 𝐴 ∈ V
65clel2 2868 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵))
73, 4, 63bitr4ri 213 1 (𝐴𝐵 ↔ {𝐴} ⊆ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351   = wceq 1353  wcel 2146  Vcvv 2735  wss 3127  {csn 3589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133  df-ss 3140  df-sn 3595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator