ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsrex2v GIF version

Theorem ceqsrex2v 2867
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005.)
Hypotheses
Ref Expression
ceqsrex2v.1 (𝑥 = 𝐴 → (𝜑𝜓))
ceqsrex2v.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ceqsrex2v ((𝐴𝐶𝐵𝐷) → (∃𝑥𝐶𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ 𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶   𝑥,𝐷,𝑦   𝜓,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝐶(𝑦)

Proof of Theorem ceqsrex2v
StepHypRef Expression
1 anass 401 . . . . . 6 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
21rexbii 2482 . . . . 5 (∃𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ ∃𝑦𝐷 (𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
3 r19.42v 2632 . . . . 5 (∃𝑦𝐷 (𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ (𝑥 = 𝐴 ∧ ∃𝑦𝐷 (𝑦 = 𝐵𝜑)))
42, 3bitri 184 . . . 4 (∃𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ ∃𝑦𝐷 (𝑦 = 𝐵𝜑)))
54rexbii 2482 . . 3 (∃𝑥𝐶𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ ∃𝑥𝐶 (𝑥 = 𝐴 ∧ ∃𝑦𝐷 (𝑦 = 𝐵𝜑)))
6 ceqsrex2v.1 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
76anbi2d 464 . . . . 5 (𝑥 = 𝐴 → ((𝑦 = 𝐵𝜑) ↔ (𝑦 = 𝐵𝜓)))
87rexbidv 2476 . . . 4 (𝑥 = 𝐴 → (∃𝑦𝐷 (𝑦 = 𝐵𝜑) ↔ ∃𝑦𝐷 (𝑦 = 𝐵𝜓)))
98ceqsrexv 2865 . . 3 (𝐴𝐶 → (∃𝑥𝐶 (𝑥 = 𝐴 ∧ ∃𝑦𝐷 (𝑦 = 𝐵𝜑)) ↔ ∃𝑦𝐷 (𝑦 = 𝐵𝜓)))
105, 9bitrid 192 . 2 (𝐴𝐶 → (∃𝑥𝐶𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ ∃𝑦𝐷 (𝑦 = 𝐵𝜓)))
11 ceqsrex2v.2 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
1211ceqsrexv 2865 . 2 (𝐵𝐷 → (∃𝑦𝐷 (𝑦 = 𝐵𝜓) ↔ 𝜒))
1310, 12sylan9bb 462 1 ((𝐴𝐶𝐵𝐷) → (∃𝑥𝐶𝑦𝐷 ((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝜑) ↔ 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146  wrex 2454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator