| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsrex2v | GIF version | ||
| Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005.) |
| Ref | Expression |
|---|---|
| ceqsrex2v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ceqsrex2v.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ceqsrex2v | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝜑) ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 401 | . . . . . 6 ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑))) | |
| 2 | 1 | rexbii 2537 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐷 ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐷 (𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑))) |
| 3 | r19.42v 2688 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐷 (𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑)) ↔ (𝑥 = 𝐴 ∧ ∃𝑦 ∈ 𝐷 (𝑦 = 𝐵 ∧ 𝜑))) | |
| 4 | 2, 3 | bitri 184 | . . . 4 ⊢ (∃𝑦 ∈ 𝐷 ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ ∃𝑦 ∈ 𝐷 (𝑦 = 𝐵 ∧ 𝜑))) |
| 5 | 4 | rexbii 2537 | . . 3 ⊢ (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝜑) ↔ ∃𝑥 ∈ 𝐶 (𝑥 = 𝐴 ∧ ∃𝑦 ∈ 𝐷 (𝑦 = 𝐵 ∧ 𝜑))) |
| 6 | ceqsrex2v.1 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | anbi2d 464 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑦 = 𝐵 ∧ 𝜑) ↔ (𝑦 = 𝐵 ∧ 𝜓))) |
| 8 | 7 | rexbidv 2531 | . . . 4 ⊢ (𝑥 = 𝐴 → (∃𝑦 ∈ 𝐷 (𝑦 = 𝐵 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐷 (𝑦 = 𝐵 ∧ 𝜓))) |
| 9 | 8 | ceqsrexv 2933 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (∃𝑥 ∈ 𝐶 (𝑥 = 𝐴 ∧ ∃𝑦 ∈ 𝐷 (𝑦 = 𝐵 ∧ 𝜑)) ↔ ∃𝑦 ∈ 𝐷 (𝑦 = 𝐵 ∧ 𝜓))) |
| 10 | 5, 9 | bitrid 192 | . 2 ⊢ (𝐴 ∈ 𝐶 → (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐷 (𝑦 = 𝐵 ∧ 𝜓))) |
| 11 | ceqsrex2v.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 12 | 11 | ceqsrexv 2933 | . 2 ⊢ (𝐵 ∈ 𝐷 → (∃𝑦 ∈ 𝐷 (𝑦 = 𝐵 ∧ 𝜓) ↔ 𝜒)) |
| 13 | 10, 12 | sylan9bb 462 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝜑) ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |