| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfab | GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfab.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfsab 2188 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
| 3 | 2 | nfci 2329 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1474 {cab 2182 Ⅎwnfc 2326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-nfc 2328 |
| This theorem is referenced by: nfaba1 2345 nfrabw 2678 sbcel12g 3099 sbceqg 3100 nfun 3320 nfpw 3619 nfpr 3673 nfop 3825 nfuni 3846 nfint 3885 intab 3904 nfiunxy 3943 nfiinxy 3944 nfiunya 3945 nfiinya 3946 nfiu1 3947 nfii1 3948 nfopab 4102 nfopab1 4103 nfopab2 4104 repizf2 4196 nfdm 4911 fun11iun 5528 eusvobj2 5911 nfoprab1 5975 nfoprab2 5976 nfoprab3 5977 nfoprab 5978 nfrecs 6374 nffrec 6463 nfixpxy 6785 nfixp1 6786 nfwrd 10980 |
| Copyright terms: Public domain | W3C validator |