Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfab | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfab.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfsab 2162 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
3 | 2 | nfci 2302 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1453 {cab 2156 Ⅎwnfc 2299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-nfc 2301 |
This theorem is referenced by: nfaba1 2318 nfrabxy 2650 sbcel12g 3064 sbceqg 3065 nfun 3283 nfpw 3579 nfpr 3633 nfop 3781 nfuni 3802 nfint 3841 intab 3860 nfiunxy 3899 nfiinxy 3900 nfiunya 3901 nfiinya 3902 nfiu1 3903 nfii1 3904 nfopab 4057 nfopab1 4058 nfopab2 4059 repizf2 4148 nfdm 4855 fun11iun 5463 eusvobj2 5839 nfoprab1 5902 nfoprab2 5903 nfoprab3 5904 nfoprab 5905 nfrecs 6286 nffrec 6375 nfixpxy 6695 nfixp1 6696 |
Copyright terms: Public domain | W3C validator |