| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfab | GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfab.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfsab 2201 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
| 3 | 2 | nfci 2342 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1486 {cab 2195 Ⅎwnfc 2339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-nfc 2341 |
| This theorem is referenced by: nfaba1 2358 nfrabw 2692 sbcel12g 3119 sbceqg 3120 nfun 3340 nfpw 3642 nfpr 3696 nfop 3852 nfuni 3873 nfint 3912 intab 3931 nfiunxy 3970 nfiinxy 3971 nfiunya 3972 nfiinya 3973 nfiu1 3974 nfii1 3975 nfopab 4131 nfopab1 4132 nfopab2 4133 repizf2 4225 nfdm 4944 fun11iun 5569 eusvobj2 5960 nfoprab1 6024 nfoprab2 6025 nfoprab3 6026 nfoprab 6027 nfrecs 6423 nffrec 6512 nfixpxy 6834 nfixp1 6835 nfwrd 11066 |
| Copyright terms: Public domain | W3C validator |