| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfab | GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) | 
| Ref | Expression | 
|---|---|
| nfab.1 | ⊢ Ⅎ𝑥𝜑 | 
| Ref | Expression | 
|---|---|
| nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfsab 2188 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} | 
| 3 | 2 | nfci 2329 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} | 
| Colors of variables: wff set class | 
| Syntax hints: Ⅎwnf 1474 {cab 2182 Ⅎwnfc 2326 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-nfc 2328 | 
| This theorem is referenced by: nfaba1 2345 nfrabw 2678 sbcel12g 3099 sbceqg 3100 nfun 3319 nfpw 3618 nfpr 3672 nfop 3824 nfuni 3845 nfint 3884 intab 3903 nfiunxy 3942 nfiinxy 3943 nfiunya 3944 nfiinya 3945 nfiu1 3946 nfii1 3947 nfopab 4101 nfopab1 4102 nfopab2 4103 repizf2 4195 nfdm 4910 fun11iun 5525 eusvobj2 5908 nfoprab1 5971 nfoprab2 5972 nfoprab3 5973 nfoprab 5974 nfrecs 6365 nffrec 6454 nfixpxy 6776 nfixp1 6777 nfwrd 10963 | 
| Copyright terms: Public domain | W3C validator |