![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfab | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfab.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfsab 2185 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
3 | 2 | nfci 2326 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1471 {cab 2179 Ⅎwnfc 2323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-nfc 2325 |
This theorem is referenced by: nfaba1 2342 nfrabw 2675 sbcel12g 3096 sbceqg 3097 nfun 3316 nfpw 3615 nfpr 3669 nfop 3821 nfuni 3842 nfint 3881 intab 3900 nfiunxy 3939 nfiinxy 3940 nfiunya 3941 nfiinya 3942 nfiu1 3943 nfii1 3944 nfopab 4098 nfopab1 4099 nfopab2 4100 repizf2 4192 nfdm 4907 fun11iun 5522 eusvobj2 5905 nfoprab1 5968 nfoprab2 5969 nfoprab3 5970 nfoprab 5971 nfrecs 6362 nffrec 6451 nfixpxy 6773 nfixp1 6774 nfwrd 10945 |
Copyright terms: Public domain | W3C validator |