![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfab | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfab.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfsab 2185 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
3 | 2 | nfci 2326 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1471 {cab 2179 Ⅎwnfc 2323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-nfc 2325 |
This theorem is referenced by: nfaba1 2342 nfrabw 2675 sbcel12g 3095 sbceqg 3096 nfun 3315 nfpw 3614 nfpr 3668 nfop 3820 nfuni 3841 nfint 3880 intab 3899 nfiunxy 3938 nfiinxy 3939 nfiunya 3940 nfiinya 3941 nfiu1 3942 nfii1 3943 nfopab 4097 nfopab1 4098 nfopab2 4099 repizf2 4191 nfdm 4906 fun11iun 5521 eusvobj2 5904 nfoprab1 5967 nfoprab2 5968 nfoprab3 5969 nfoprab 5970 nfrecs 6360 nffrec 6449 nfixpxy 6771 nfixp1 6772 nfwrd 10942 |
Copyright terms: Public domain | W3C validator |