Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfab | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfab.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfsab 2162 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
3 | 2 | nfci 2302 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1453 {cab 2156 Ⅎwnfc 2299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-nfc 2301 |
This theorem is referenced by: nfaba1 2318 nfrabxy 2650 sbcel12g 3064 sbceqg 3065 nfun 3283 nfpw 3577 nfpr 3631 nfop 3779 nfuni 3800 nfint 3839 intab 3858 nfiunxy 3897 nfiinxy 3898 nfiunya 3899 nfiinya 3900 nfiu1 3901 nfii1 3902 nfopab 4055 nfopab1 4056 nfopab2 4057 repizf2 4146 nfdm 4853 fun11iun 5461 eusvobj2 5837 nfoprab1 5900 nfoprab2 5901 nfoprab3 5902 nfoprab 5903 nfrecs 6284 nffrec 6373 nfixpxy 6692 nfixp1 6693 |
Copyright terms: Public domain | W3C validator |