| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfab | GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfab.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfsab 2221 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
| 3 | 2 | nfci 2362 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1506 {cab 2215 Ⅎwnfc 2359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-nfc 2361 |
| This theorem is referenced by: nfaba1 2378 nfrabw 2712 sbcel12g 3139 sbceqg 3140 nfun 3360 nfpw 3662 nfpr 3716 nfop 3873 nfuni 3894 nfint 3933 intab 3952 nfiunxy 3991 nfiinxy 3992 nfiunya 3993 nfiinya 3994 nfiu1 3995 nfii1 3996 nfopab 4152 nfopab1 4153 nfopab2 4154 repizf2 4246 nfdm 4968 fun11iun 5595 eusvobj2 5993 nfoprab1 6059 nfoprab2 6060 nfoprab3 6061 nfoprab 6062 nfrecs 6459 nffrec 6548 nfixpxy 6872 nfixp1 6873 nfwrd 11108 |
| Copyright terms: Public domain | W3C validator |