Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfab | GIF version |
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfab.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nfsab 2157 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
3 | 2 | nfci 2298 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1448 {cab 2151 Ⅎwnfc 2295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-nfc 2297 |
This theorem is referenced by: nfaba1 2314 nfrabxy 2646 sbcel12g 3060 sbceqg 3061 nfun 3278 nfpw 3572 nfpr 3626 nfop 3774 nfuni 3795 nfint 3834 intab 3853 nfiunxy 3892 nfiinxy 3893 nfiunya 3894 nfiinya 3895 nfiu1 3896 nfii1 3897 nfopab 4050 nfopab1 4051 nfopab2 4052 repizf2 4141 nfdm 4848 fun11iun 5453 eusvobj2 5828 nfoprab1 5891 nfoprab2 5892 nfoprab3 5893 nfoprab 5894 nfrecs 6275 nffrec 6364 nfixpxy 6683 nfixp1 6684 |
Copyright terms: Public domain | W3C validator |