| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfab | GIF version | ||
| Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfab.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfab | ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfab.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfsab 2198 | . 2 ⊢ Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜑} |
| 3 | 2 | nfci 2339 | 1 ⊢ Ⅎ𝑥{𝑦 ∣ 𝜑} |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1484 {cab 2192 Ⅎwnfc 2336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-nfc 2338 |
| This theorem is referenced by: nfaba1 2355 nfrabw 2688 sbcel12g 3109 sbceqg 3110 nfun 3330 nfpw 3630 nfpr 3684 nfop 3837 nfuni 3858 nfint 3897 intab 3916 nfiunxy 3955 nfiinxy 3956 nfiunya 3957 nfiinya 3958 nfiu1 3959 nfii1 3960 nfopab 4116 nfopab1 4117 nfopab2 4118 repizf2 4210 nfdm 4927 fun11iun 5550 eusvobj2 5937 nfoprab1 6001 nfoprab2 6002 nfoprab3 6003 nfoprab 6004 nfrecs 6400 nffrec 6489 nfixpxy 6811 nfixp1 6812 nfwrd 11029 |
| Copyright terms: Public domain | W3C validator |