ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeu GIF version

Theorem eqeu 2900
Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.)
Hypothesis
Ref Expression
eqeu.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
eqeu ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃!𝑥𝜑)
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem eqeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeu.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
21spcegv 2818 . . . 4 (𝐴𝐵 → (𝜓 → ∃𝑥𝜑))
32imp 123 . . 3 ((𝐴𝐵𝜓) → ∃𝑥𝜑)
433adant3 1012 . 2 ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃𝑥𝜑)
5 eqeq2 2180 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
65imbi2d 229 . . . . . 6 (𝑦 = 𝐴 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝐴)))
76albidv 1817 . . . . 5 (𝑦 = 𝐴 → (∀𝑥(𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝜑𝑥 = 𝐴)))
87spcegv 2818 . . . 4 (𝐴𝐵 → (∀𝑥(𝜑𝑥 = 𝐴) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
98imp 123 . . 3 ((𝐴𝐵 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
1093adant2 1011 . 2 ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
11 nfv 1521 . . 3 𝑦𝜑
1211eu3 2065 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
134, 10, 12sylanbrc 415 1 ((𝐴𝐵𝜓 ∧ ∀𝑥(𝜑𝑥 = 𝐴)) → ∃!𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 973  wal 1346   = wceq 1348  wex 1485  ∃!weu 2019  wcel 2141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator