| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeu | GIF version | ||
| Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.) |
| Ref | Expression |
|---|---|
| eqeu.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| eqeu | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃!𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeu.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | spcegv 2852 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝜓 → ∃𝑥𝜑)) |
| 3 | 2 | imp 124 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥𝜑) |
| 4 | 3 | 3adant3 1019 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃𝑥𝜑) |
| 5 | eqeq2 2206 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | |
| 6 | 5 | imbi2d 230 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜑 → 𝑥 = 𝐴))) |
| 7 | 6 | albidv 1838 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 → 𝑥 = 𝐴))) |
| 8 | 7 | spcegv 2852 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝜑 → 𝑥 = 𝐴) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 9 | 8 | imp 124 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 10 | 9 | 3adant2 1018 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 11 | nfv 1542 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 12 | 11 | eu3 2091 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 13 | 4, 10, 12 | sylanbrc 417 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃!𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 ∀wal 1362 = wceq 1364 ∃wex 1506 ∃!weu 2045 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |