| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbsng | GIF version | ||
| Description: Distribute proper substitution through the singleton of a class. (Contributed by Alan Sare, 10-Nov-2012.) |
| Ref | Expression |
|---|---|
| csbsng | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋𝐴 / 𝑥⦌𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbabg 3159 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 = 𝐵}) | |
| 2 | sbceq2g 3119 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑦 = 𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵)) | |
| 3 | 2 | abbidv 2324 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵}) |
| 4 | 1, 3 | eqtrd 2239 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵}) |
| 5 | df-sn 3644 | . . 3 ⊢ {𝐵} = {𝑦 ∣ 𝑦 = 𝐵} | |
| 6 | 5 | csbeq2i 3124 | . 2 ⊢ ⦋𝐴 / 𝑥⦌{𝐵} = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} |
| 7 | df-sn 3644 | . 2 ⊢ {⦋𝐴 / 𝑥⦌𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} | |
| 8 | 4, 6, 7 | 3eqtr4g 2264 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋𝐴 / 𝑥⦌𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 {cab 2192 [wsbc 3002 ⦋csb 3097 {csn 3638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-sbc 3003 df-csb 3098 df-sn 3644 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |