ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbsng GIF version

Theorem csbsng 3683
Description: Distribute proper substitution through the singleton of a class. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbsng (𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})

Proof of Theorem csbsng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbabg 3146 . . 3 (𝐴𝑉𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦[𝐴 / 𝑥]𝑦 = 𝐵})
2 sbceq2g 3106 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦 = 𝐵𝑦 = 𝐴 / 𝑥𝐵))
32abbidv 2314 . . 3 (𝐴𝑉 → {𝑦[𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵})
41, 3eqtrd 2229 . 2 (𝐴𝑉𝐴 / 𝑥{𝑦𝑦 = 𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵})
5 df-sn 3628 . . 3 {𝐵} = {𝑦𝑦 = 𝐵}
65csbeq2i 3111 . 2 𝐴 / 𝑥{𝐵} = 𝐴 / 𝑥{𝑦𝑦 = 𝐵}
7 df-sn 3628 . 2 {𝐴 / 𝑥𝐵} = {𝑦𝑦 = 𝐴 / 𝑥𝐵}
84, 6, 73eqtr4g 2254 1 (𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  {cab 2182  [wsbc 2989  csb 3084  {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-csb 3085  df-sn 3628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator