ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsng GIF version

Theorem elsng 3681
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
elsng (𝐴𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))

Proof of Theorem elsng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2236 . 2 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
2 df-sn 3672 . 2 {𝐵} = {𝑥𝑥 = 𝐵}
31, 2elab2g 2950 1 (𝐴𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200  {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sn 3672
This theorem is referenced by:  elsn  3682  elsni  3684  snidg  3695  eltpg  3711  eldifsn  3794  elsucg  4494  funconstss  5752  fniniseg  5754  fniniseg2  5756  tpfidceq  7088  fidcenumlemrks  7116  ltxr  9967  elfzp12  10291  1exp  10785  imasaddfnlemg  13342  0subm  13512  0subg  13731  0nsg  13746  kerf1ghm  13806  lsssn0  14328  plycj  15429  2lgslem2  15765
  Copyright terms: Public domain W3C validator