ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsng GIF version

Theorem elsng 3467
Description: There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15 (generalized). (Contributed by NM, 13-Sep-1995.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
elsng (𝐴𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))

Proof of Theorem elsng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2095 . 2 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
2 df-sn 3458 . 2 {𝐵} = {𝑥𝑥 = 𝐵}
31, 2elab2g 2765 1 (𝐴𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1290  wcel 1439  {csn 3452
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2624  df-sn 3458
This theorem is referenced by:  elsn  3468  elsni  3470  snidg  3479  eltpg  3494  eldifsn  3575  elsucg  4242  funconstss  5433  fniniseg  5435  fniniseg2  5437  fidcenumlemrks  6718  ltxr  9309  elfzp12  9576  1exp  10047
  Copyright terms: Public domain W3C validator