![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sneq | GIF version |
Description: Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sneq | ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2203 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 = 𝐴 ↔ 𝑥 = 𝐵)) | |
2 | 1 | abbidv 2311 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ 𝑥 = 𝐴} = {𝑥 ∣ 𝑥 = 𝐵}) |
3 | df-sn 3625 | . 2 ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | |
4 | df-sn 3625 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
5 | 2, 3, 4 | 3eqtr4g 2251 | 1 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 {cab 2179 {csn 3619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-sn 3625 |
This theorem is referenced by: sneqi 3631 sneqd 3632 euabsn 3689 absneu 3691 preq1 3696 tpeq3 3707 snssgOLD 3755 sneqrg 3789 sneqbg 3790 opeq1 3805 unisng 3853 exmidsssn 4232 exmidsssnc 4233 suceq 4434 snnex 4480 opeliunxp 4715 relop 4813 elimasng 5034 dmsnsnsng 5144 elxp4 5154 elxp5 5155 iotajust 5215 fconstg 5451 f1osng 5542 nfvres 5589 fsng 5732 fnressn 5745 fressnfv 5746 funfvima3 5793 isoselem 5864 1stvalg 6197 2ndvalg 6198 2ndval2 6211 fo1st 6212 fo2nd 6213 f1stres 6214 f2ndres 6215 mpomptsx 6252 dmmpossx 6254 fmpox 6255 brtpos2 6306 dftpos4 6318 tpostpos 6319 eceq1 6624 fvdiagfn 6749 mapsncnv 6751 elixpsn 6791 ixpsnf1o 6792 ensn1g 6853 en1 6855 xpsneng 6878 xpcomco 6882 xpassen 6886 xpdom2 6887 phplem3 6912 phplem3g 6914 fidifsnen 6928 xpfi 6988 pm54.43 7252 cc2lem 7328 cc2 7329 exp3val 10615 fsum2dlemstep 11580 fsumcnv 11583 fisumcom2 11584 fprod2dlemstep 11768 fprodcnv 11771 fprodcom2fi 11772 lssats2 13913 lspsneq0 13925 txswaphmeolem 14499 |
Copyright terms: Public domain | W3C validator |