Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sneq | GIF version |
Description: Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sneq | ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2180 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 = 𝐴 ↔ 𝑥 = 𝐵)) | |
2 | 1 | abbidv 2288 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ 𝑥 = 𝐴} = {𝑥 ∣ 𝑥 = 𝐵}) |
3 | df-sn 3589 | . 2 ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | |
4 | df-sn 3589 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
5 | 2, 3, 4 | 3eqtr4g 2228 | 1 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 {cab 2156 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-sn 3589 |
This theorem is referenced by: sneqi 3595 sneqd 3596 euabsn 3653 absneu 3655 preq1 3660 tpeq3 3671 snssg 3716 sneqrg 3749 sneqbg 3750 opeq1 3765 unisng 3813 exmidsssn 4188 exmidsssnc 4189 suceq 4387 snnex 4433 opeliunxp 4666 relop 4761 elimasng 4979 dmsnsnsng 5088 elxp4 5098 elxp5 5099 iotajust 5159 fconstg 5394 f1osng 5483 nfvres 5529 fsng 5669 fnressn 5682 fressnfv 5683 funfvima3 5729 isoselem 5799 1stvalg 6121 2ndvalg 6122 2ndval2 6135 fo1st 6136 fo2nd 6137 f1stres 6138 f2ndres 6139 mpomptsx 6176 dmmpossx 6178 fmpox 6179 brtpos2 6230 dftpos4 6242 tpostpos 6243 eceq1 6548 fvdiagfn 6671 mapsncnv 6673 elixpsn 6713 ixpsnf1o 6714 ensn1g 6775 en1 6777 xpsneng 6800 xpcomco 6804 xpassen 6808 xpdom2 6809 phplem3 6832 phplem3g 6834 fidifsnen 6848 xpfi 6907 pm54.43 7167 cc2lem 7228 cc2 7229 exp3val 10478 fsum2dlemstep 11397 fsumcnv 11400 fisumcom2 11401 fprod2dlemstep 11585 fprodcnv 11588 fprodcom2fi 11589 txswaphmeolem 13114 |
Copyright terms: Public domain | W3C validator |