| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneq | GIF version | ||
| Description: Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sneq | ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2216 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 = 𝐴 ↔ 𝑥 = 𝐵)) | |
| 2 | 1 | abbidv 2324 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ 𝑥 = 𝐴} = {𝑥 ∣ 𝑥 = 𝐵}) |
| 3 | df-sn 3643 | . 2 ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | |
| 4 | df-sn 3643 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
| 5 | 2, 3, 4 | 3eqtr4g 2264 | 1 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 {cab 2192 {csn 3637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-sn 3643 |
| This theorem is referenced by: sneqi 3649 sneqd 3650 euabsn 3707 absneu 3709 preq1 3714 tpeq3 3725 snssgOLD 3774 sneqrg 3808 sneqbg 3809 opeq1 3824 unisng 3872 exmidsssn 4253 exmidsssnc 4254 suceq 4456 snnex 4502 opeliunxp 4737 relop 4835 elimasng 5058 dmsnsnsng 5168 elxp4 5178 elxp5 5179 iotajust 5239 fconstg 5483 f1osng 5575 nfvres 5622 fsng 5765 funopsn 5774 fnressn 5782 fressnfv 5783 funfvima3 5830 isoselem 5901 1stvalg 6240 2ndvalg 6241 2ndval2 6254 fo1st 6255 fo2nd 6256 f1stres 6257 f2ndres 6258 mpomptsx 6295 dmmpossx 6297 fmpox 6298 brtpos2 6349 dftpos4 6361 tpostpos 6362 eceq1 6667 fvdiagfn 6792 mapsncnv 6794 elixpsn 6834 ixpsnf1o 6835 ensn1g 6901 en1 6903 xpsneng 6931 xpcomco 6935 xpassen 6939 xpdom2 6940 phplem3 6965 phplem3g 6967 fidifsnen 6981 xpfi 7043 pm54.43 7312 cc2lem 7393 cc2 7394 exp3val 10703 fsum2dlemstep 11815 fsumcnv 11818 fisumcom2 11819 fprod2dlemstep 12003 fprodcnv 12006 fprodcom2fi 12007 pwsval 13193 lssats2 14246 lspsneq0 14258 txswaphmeolem 14862 |
| Copyright terms: Public domain | W3C validator |