Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sneq | GIF version |
Description: Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sneq | ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2175 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 = 𝐴 ↔ 𝑥 = 𝐵)) | |
2 | 1 | abbidv 2284 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ 𝑥 = 𝐴} = {𝑥 ∣ 𝑥 = 𝐵}) |
3 | df-sn 3582 | . 2 ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | |
4 | df-sn 3582 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
5 | 2, 3, 4 | 3eqtr4g 2224 | 1 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 {cab 2151 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-sn 3582 |
This theorem is referenced by: sneqi 3588 sneqd 3589 euabsn 3646 absneu 3648 preq1 3653 tpeq3 3664 snssg 3709 sneqrg 3742 sneqbg 3743 opeq1 3758 unisng 3806 exmidsssn 4181 exmidsssnc 4182 suceq 4380 snnex 4426 opeliunxp 4659 relop 4754 elimasng 4972 dmsnsnsng 5081 elxp4 5091 elxp5 5092 iotajust 5152 fconstg 5384 f1osng 5473 nfvres 5519 fsng 5658 fnressn 5671 fressnfv 5672 funfvima3 5718 isoselem 5788 1stvalg 6110 2ndvalg 6111 2ndval2 6124 fo1st 6125 fo2nd 6126 f1stres 6127 f2ndres 6128 mpomptsx 6165 dmmpossx 6167 fmpox 6168 brtpos2 6219 dftpos4 6231 tpostpos 6232 eceq1 6536 fvdiagfn 6659 mapsncnv 6661 elixpsn 6701 ixpsnf1o 6702 ensn1g 6763 en1 6765 xpsneng 6788 xpcomco 6792 xpassen 6796 xpdom2 6797 phplem3 6820 phplem3g 6822 fidifsnen 6836 xpfi 6895 pm54.43 7146 cc2lem 7207 cc2 7208 exp3val 10457 fsum2dlemstep 11375 fsumcnv 11378 fisumcom2 11379 fprod2dlemstep 11563 fprodcnv 11566 fprodcom2fi 11567 txswaphmeolem 12970 |
Copyright terms: Public domain | W3C validator |