| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sneq | GIF version | ||
| Description: Equality theorem for singletons. Part of Exercise 4 of [TakeutiZaring] p. 15. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sneq | ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2239 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 = 𝐴 ↔ 𝑥 = 𝐵)) | |
| 2 | 1 | abbidv 2347 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ 𝑥 = 𝐴} = {𝑥 ∣ 𝑥 = 𝐵}) |
| 3 | df-sn 3672 | . 2 ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | |
| 4 | df-sn 3672 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
| 5 | 2, 3, 4 | 3eqtr4g 2287 | 1 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 {cab 2215 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-sn 3672 |
| This theorem is referenced by: sneqi 3678 sneqd 3679 euabsn 3736 absneu 3738 preq1 3743 tpeq3 3754 snssgOLD 3803 sneqrg 3839 sneqbg 3840 opeq1 3856 unisng 3904 exmidsssn 4285 exmidsssnc 4286 suceq 4492 snnex 4538 opeliunxp 4773 relop 4871 elimasng 5095 dmsnsnsng 5205 elxp4 5215 elxp5 5216 iotajust 5276 fconstg 5521 f1osng 5613 nfvres 5662 fsng 5807 funopsn 5816 fnressn 5824 fressnfv 5825 funfvima3 5872 isoselem 5943 1stvalg 6286 2ndvalg 6287 2ndval2 6300 fo1st 6301 fo2nd 6302 f1stres 6303 f2ndres 6304 mpomptsx 6341 dmmpossx 6343 fmpox 6344 brtpos2 6395 dftpos4 6407 tpostpos 6408 eceq1 6713 fvdiagfn 6838 mapsncnv 6840 elixpsn 6880 ixpsnf1o 6881 ensn1g 6947 en1 6949 xpsneng 6977 xpcomco 6981 xpassen 6985 xpdom2 6986 phplem3 7011 phplem3g 7013 fidifsnen 7028 xpfi 7090 pm54.43 7359 cc2lem 7448 cc2 7449 exp3val 10758 fsum2dlemstep 11940 fsumcnv 11943 fisumcom2 11944 fprod2dlemstep 12128 fprodcnv 12131 fprodcom2fi 12132 pwsval 13319 lssats2 14372 lspsneq0 14384 txswaphmeolem 14988 |
| Copyright terms: Public domain | W3C validator |