| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfiota2 | GIF version | ||
| Description: Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.) |
| Ref | Expression |
|---|---|
| dfiota2 | ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iota 5277 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} | |
| 2 | df-sn 3672 | . . . . . 6 ⊢ {𝑦} = {𝑥 ∣ 𝑥 = 𝑦} | |
| 3 | 2 | eqeq2i 2240 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) |
| 4 | abbi 2343 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) | |
| 5 | 3, 4 | bitr4i 187 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} = {𝑦} ↔ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| 6 | 5 | abbii 2345 | . . 3 ⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
| 7 | 6 | unieqi 3897 | . 2 ⊢ ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
| 8 | 1, 7 | eqtri 2250 | 1 ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)} |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1393 = wceq 1395 {cab 2215 {csn 3666 ∪ cuni 3887 ℩cio 5275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-sn 3672 df-uni 3888 df-iota 5277 |
| This theorem is referenced by: nfiota1 5279 nfiotadw 5280 cbviota 5282 sb8iota 5285 iotaval 5289 iotanul 5293 eliota 5305 fv2 5621 |
| Copyright terms: Public domain | W3C validator |