ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfiota2 GIF version

Theorem dfiota2 5220
Description: Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
dfiota2 (℩𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfiota2
StepHypRef Expression
1 df-iota 5219 . 2 (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
2 df-sn 3628 . . . . . 6 {𝑦} = {𝑥𝑥 = 𝑦}
32eqeq2i 2207 . . . . 5 ({𝑥𝜑} = {𝑦} ↔ {𝑥𝜑} = {𝑥𝑥 = 𝑦})
4 abbi 2310 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) ↔ {𝑥𝜑} = {𝑥𝑥 = 𝑦})
53, 4bitr4i 187 . . . 4 ({𝑥𝜑} = {𝑦} ↔ ∀𝑥(𝜑𝑥 = 𝑦))
65abbii 2312 . . 3 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
76unieqi 3849 . 2 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
81, 7eqtri 2217 1 (℩𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1362   = wceq 1364  {cab 2182  {csn 3622   cuni 3839  cio 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-sn 3628  df-uni 3840  df-iota 5219
This theorem is referenced by:  nfiota1  5221  nfiotadw  5222  cbviota  5224  sb8iota  5226  iotaval  5230  iotanul  5234  eliota  5246  fv2  5553
  Copyright terms: Public domain W3C validator