ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunid GIF version

Theorem iunid 4020
Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.)
Assertion
Ref Expression
iunid 𝑥𝐴 {𝑥} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem iunid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-sn 3672 . . . . 5 {𝑥} = {𝑦𝑦 = 𝑥}
2 equcom 1752 . . . . . 6 (𝑦 = 𝑥𝑥 = 𝑦)
32abbii 2345 . . . . 5 {𝑦𝑦 = 𝑥} = {𝑦𝑥 = 𝑦}
41, 3eqtri 2250 . . . 4 {𝑥} = {𝑦𝑥 = 𝑦}
54a1i 9 . . 3 (𝑥𝐴 → {𝑥} = {𝑦𝑥 = 𝑦})
65iuneq2i 3982 . 2 𝑥𝐴 {𝑥} = 𝑥𝐴 {𝑦𝑥 = 𝑦}
7 iunab 4011 . . 3 𝑥𝐴 {𝑦𝑥 = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 𝑥 = 𝑦}
8 risset 2558 . . . 4 (𝑦𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑦)
98abbii 2345 . . 3 {𝑦𝑦𝐴} = {𝑦 ∣ ∃𝑥𝐴 𝑥 = 𝑦}
10 abid2 2350 . . 3 {𝑦𝑦𝐴} = 𝐴
117, 9, 103eqtr2i 2256 . 2 𝑥𝐴 {𝑦𝑥 = 𝑦} = 𝐴
126, 11eqtri 2250 1 𝑥𝐴 {𝑥} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  {cab 2215  wrex 2509  {csn 3666   ciun 3964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-sn 3672  df-iun 3966
This theorem is referenced by:  abnexg  4536  iunxpconst  4778  xpexgALT  6276  uniqs  6738
  Copyright terms: Public domain W3C validator