| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iunid | GIF version | ||
| Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.) |
| Ref | Expression |
|---|---|
| iunid | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sn 3639 | . . . . 5 ⊢ {𝑥} = {𝑦 ∣ 𝑦 = 𝑥} | |
| 2 | equcom 1729 | . . . . . 6 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 3 | 2 | abbii 2321 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 = 𝑥} = {𝑦 ∣ 𝑥 = 𝑦} |
| 4 | 1, 3 | eqtri 2226 | . . . 4 ⊢ {𝑥} = {𝑦 ∣ 𝑥 = 𝑦} |
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {𝑥} = {𝑦 ∣ 𝑥 = 𝑦}) |
| 6 | 5 | iuneq2i 3945 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝑥 = 𝑦} |
| 7 | iunab 3974 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝑥 = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦} | |
| 8 | risset 2534 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦) | |
| 9 | 8 | abbii 2321 | . . 3 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦} |
| 10 | abid2 2326 | . . 3 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
| 11 | 7, 9, 10 | 3eqtr2i 2232 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝑥 = 𝑦} = 𝐴 |
| 12 | 6, 11 | eqtri 2226 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2176 {cab 2191 ∃wrex 2485 {csn 3633 ∪ ciun 3927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-in 3172 df-ss 3179 df-sn 3639 df-iun 3929 |
| This theorem is referenced by: abnexg 4493 iunxpconst 4735 xpexgALT 6218 uniqs 6680 |
| Copyright terms: Public domain | W3C validator |