ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunid GIF version

Theorem iunid 3944
Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.)
Assertion
Ref Expression
iunid 𝑥𝐴 {𝑥} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem iunid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-sn 3600 . . . . 5 {𝑥} = {𝑦𝑦 = 𝑥}
2 equcom 1706 . . . . . 6 (𝑦 = 𝑥𝑥 = 𝑦)
32abbii 2293 . . . . 5 {𝑦𝑦 = 𝑥} = {𝑦𝑥 = 𝑦}
41, 3eqtri 2198 . . . 4 {𝑥} = {𝑦𝑥 = 𝑦}
54a1i 9 . . 3 (𝑥𝐴 → {𝑥} = {𝑦𝑥 = 𝑦})
65iuneq2i 3906 . 2 𝑥𝐴 {𝑥} = 𝑥𝐴 {𝑦𝑥 = 𝑦}
7 iunab 3935 . . 3 𝑥𝐴 {𝑦𝑥 = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 𝑥 = 𝑦}
8 risset 2505 . . . 4 (𝑦𝐴 ↔ ∃𝑥𝐴 𝑥 = 𝑦)
98abbii 2293 . . 3 {𝑦𝑦𝐴} = {𝑦 ∣ ∃𝑥𝐴 𝑥 = 𝑦}
10 abid2 2298 . . 3 {𝑦𝑦𝐴} = 𝐴
117, 9, 103eqtr2i 2204 . 2 𝑥𝐴 {𝑦𝑥 = 𝑦} = 𝐴
126, 11eqtri 2198 1 𝑥𝐴 {𝑥} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  {cab 2163  wrex 2456  {csn 3594   ciun 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-sn 3600  df-iun 3890
This theorem is referenced by:  abnexg  4448  iunxpconst  4688  xpexgALT  6136  uniqs  6595
  Copyright terms: Public domain W3C validator