| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iunid | GIF version | ||
| Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.) |
| Ref | Expression |
|---|---|
| iunid | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sn 3638 | . . . . 5 ⊢ {𝑥} = {𝑦 ∣ 𝑦 = 𝑥} | |
| 2 | equcom 1728 | . . . . . 6 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 3 | 2 | abbii 2320 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 = 𝑥} = {𝑦 ∣ 𝑥 = 𝑦} |
| 4 | 1, 3 | eqtri 2225 | . . . 4 ⊢ {𝑥} = {𝑦 ∣ 𝑥 = 𝑦} |
| 5 | 4 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {𝑥} = {𝑦 ∣ 𝑥 = 𝑦}) |
| 6 | 5 | iuneq2i 3944 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝑥 = 𝑦} |
| 7 | iunab 3973 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝑥 = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦} | |
| 8 | risset 2533 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦) | |
| 9 | 8 | abbii 2320 | . . 3 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑥 = 𝑦} |
| 10 | abid2 2325 | . . 3 ⊢ {𝑦 ∣ 𝑦 ∈ 𝐴} = 𝐴 | |
| 11 | 7, 9, 10 | 3eqtr2i 2231 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝑥 = 𝑦} = 𝐴 |
| 12 | 6, 11 | eqtri 2225 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 {cab 2190 ∃wrex 2484 {csn 3632 ∪ ciun 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-in 3171 df-ss 3178 df-sn 3638 df-iun 3928 |
| This theorem is referenced by: abnexg 4492 iunxpconst 4734 xpexgALT 6217 uniqs 6679 |
| Copyright terms: Public domain | W3C validator |