| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfimafn2 | GIF version | ||
| Description: Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.) |
| Ref | Expression |
|---|---|
| dfimafn2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹‘𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfimafn 5675 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦}) | |
| 2 | iunab 4011 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹‘𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦} | |
| 3 | 1, 2 | eqtr4di 2280 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹‘𝑥) = 𝑦}) |
| 4 | df-sn 3672 | . . . . 5 ⊢ {(𝐹‘𝑥)} = {𝑦 ∣ 𝑦 = (𝐹‘𝑥)} | |
| 5 | eqcom 2231 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
| 6 | 5 | abbii 2345 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 = (𝐹‘𝑥)} = {𝑦 ∣ (𝐹‘𝑥) = 𝑦} |
| 7 | 4, 6 | eqtri 2250 | . . . 4 ⊢ {(𝐹‘𝑥)} = {𝑦 ∣ (𝐹‘𝑥) = 𝑦} |
| 8 | 7 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {(𝐹‘𝑥)} = {𝑦 ∣ (𝐹‘𝑥) = 𝑦}) |
| 9 | 8 | iuneq2i 3982 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {(𝐹‘𝑥)} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹‘𝑥) = 𝑦} |
| 10 | 3, 9 | eqtr4di 2280 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹‘𝑥)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 ∃wrex 2509 ⊆ wss 3197 {csn 3666 ∪ ciun 3964 dom cdm 4716 “ cima 4719 Fun wfun 5308 ‘cfv 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-fv 5322 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |