![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfimafn2 | GIF version |
Description: Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.) |
Ref | Expression |
---|---|
dfimafn2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfimafn 5606 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦}) | |
2 | iunab 3960 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹‘𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦} | |
3 | 1, 2 | eqtr4di 2244 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹‘𝑥) = 𝑦}) |
4 | df-sn 3625 | . . . . 5 ⊢ {(𝐹‘𝑥)} = {𝑦 ∣ 𝑦 = (𝐹‘𝑥)} | |
5 | eqcom 2195 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
6 | 5 | abbii 2309 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 = (𝐹‘𝑥)} = {𝑦 ∣ (𝐹‘𝑥) = 𝑦} |
7 | 4, 6 | eqtri 2214 | . . . 4 ⊢ {(𝐹‘𝑥)} = {𝑦 ∣ (𝐹‘𝑥) = 𝑦} |
8 | 7 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {(𝐹‘𝑥)} = {𝑦 ∣ (𝐹‘𝑥) = 𝑦}) |
9 | 8 | iuneq2i 3931 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {(𝐹‘𝑥)} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹‘𝑥) = 𝑦} |
10 | 3, 9 | eqtr4di 2244 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹‘𝑥)}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 {cab 2179 ∃wrex 2473 ⊆ wss 3154 {csn 3619 ∪ ciun 3913 dom cdm 4660 “ cima 4663 Fun wfun 5249 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |