| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfimafn2 | GIF version | ||
| Description: Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.) |
| Ref | Expression |
|---|---|
| dfimafn2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹‘𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfimafn 5637 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦}) | |
| 2 | iunab 3977 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹‘𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦} | |
| 3 | 1, 2 | eqtr4di 2257 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹‘𝑥) = 𝑦}) |
| 4 | df-sn 3641 | . . . . 5 ⊢ {(𝐹‘𝑥)} = {𝑦 ∣ 𝑦 = (𝐹‘𝑥)} | |
| 5 | eqcom 2208 | . . . . . 6 ⊢ (𝑦 = (𝐹‘𝑥) ↔ (𝐹‘𝑥) = 𝑦) | |
| 6 | 5 | abbii 2322 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 = (𝐹‘𝑥)} = {𝑦 ∣ (𝐹‘𝑥) = 𝑦} |
| 7 | 4, 6 | eqtri 2227 | . . . 4 ⊢ {(𝐹‘𝑥)} = {𝑦 ∣ (𝐹‘𝑥) = 𝑦} |
| 8 | 7 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {(𝐹‘𝑥)} = {𝑦 ∣ (𝐹‘𝑥) = 𝑦}) |
| 9 | 8 | iuneq2i 3948 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {(𝐹‘𝑥)} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝐹‘𝑥) = 𝑦} |
| 10 | 3, 9 | eqtr4di 2257 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹‘𝑥)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cab 2192 ∃wrex 2486 ⊆ wss 3168 {csn 3635 ∪ ciun 3930 dom cdm 4680 “ cima 4683 Fun wfun 5271 ‘cfv 5277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-iun 3932 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-fv 5285 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |