| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnsnfv | GIF version | ||
| Description: Singleton of function value. (Contributed by NM, 22-May-1998.) |
| Ref | Expression |
|---|---|
| fnsnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2209 | . . . 4 ⊢ (𝑦 = (𝐹‘𝐵) ↔ (𝐹‘𝐵) = 𝑦) | |
| 2 | fnbrfvb 5642 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑦 ↔ 𝐵𝐹𝑦)) | |
| 3 | 1, 2 | bitrid 192 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑦 = (𝐹‘𝐵) ↔ 𝐵𝐹𝑦)) |
| 4 | 3 | abbidv 2325 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑦 ∣ 𝑦 = (𝐹‘𝐵)} = {𝑦 ∣ 𝐵𝐹𝑦}) |
| 5 | df-sn 3649 | . . 3 ⊢ {(𝐹‘𝐵)} = {𝑦 ∣ 𝑦 = (𝐹‘𝐵)} | |
| 6 | 5 | a1i 9 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = {𝑦 ∣ 𝑦 = (𝐹‘𝐵)}) |
| 7 | imasng 5066 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) | |
| 8 | 7 | adantl 277 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) |
| 9 | 4, 6, 8 | 3eqtr4d 2250 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 {cab 2193 {csn 3643 class class class wbr 4059 “ cima 4696 Fn wfn 5285 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: fnimapr 5662 funfvdm 5665 fvco2 5671 fvimacnvi 5717 fsn2 5777 phplem4 6977 phplem4dom 6984 phplem4on 6990 fiintim 7054 fidcenumlemrks 7081 fidcenumlemr 7083 resunimafz0 11013 ennnfonelemhf1o 12899 |
| Copyright terms: Public domain | W3C validator |