ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnsnfv GIF version

Theorem fnsnfv 5555
Description: Singleton of function value. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
fnsnfv ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))

Proof of Theorem fnsnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqcom 2172 . . . 4 (𝑦 = (𝐹𝐵) ↔ (𝐹𝐵) = 𝑦)
2 fnbrfvb 5537 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝑦𝐵𝐹𝑦))
31, 2syl5bb 191 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑦 = (𝐹𝐵) ↔ 𝐵𝐹𝑦))
43abbidv 2288 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → {𝑦𝑦 = (𝐹𝐵)} = {𝑦𝐵𝐹𝑦})
5 df-sn 3589 . . 3 {(𝐹𝐵)} = {𝑦𝑦 = (𝐹𝐵)}
65a1i 9 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = {𝑦𝑦 = (𝐹𝐵)})
7 imasng 4976 . . 3 (𝐵𝐴 → (𝐹 “ {𝐵}) = {𝑦𝐵𝐹𝑦})
87adantl 275 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹 “ {𝐵}) = {𝑦𝐵𝐹𝑦})
94, 6, 83eqtr4d 2213 1 ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  {cab 2156  {csn 3583   class class class wbr 3989  cima 4614   Fn wfn 5193  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by:  fnimapr  5556  funfvdm  5559  fvco2  5565  fvimacnvi  5610  fsn2  5670  phplem4  6833  phplem4dom  6840  phplem4on  6845  fiintim  6906  fidcenumlemrks  6930  fidcenumlemr  6932  resunimafz0  10766  ennnfonelemhf1o  12368
  Copyright terms: Public domain W3C validator