![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnsnfv | GIF version |
Description: Singleton of function value. (Contributed by NM, 22-May-1998.) |
Ref | Expression |
---|---|
fnsnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2195 | . . . 4 ⊢ (𝑦 = (𝐹‘𝐵) ↔ (𝐹‘𝐵) = 𝑦) | |
2 | fnbrfvb 5598 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑦 ↔ 𝐵𝐹𝑦)) | |
3 | 1, 2 | bitrid 192 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑦 = (𝐹‘𝐵) ↔ 𝐵𝐹𝑦)) |
4 | 3 | abbidv 2311 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑦 ∣ 𝑦 = (𝐹‘𝐵)} = {𝑦 ∣ 𝐵𝐹𝑦}) |
5 | df-sn 3625 | . . 3 ⊢ {(𝐹‘𝐵)} = {𝑦 ∣ 𝑦 = (𝐹‘𝐵)} | |
6 | 5 | a1i 9 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = {𝑦 ∣ 𝑦 = (𝐹‘𝐵)}) |
7 | imasng 5031 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) | |
8 | 7 | adantl 277 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) |
9 | 4, 6, 8 | 3eqtr4d 2236 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 {cab 2179 {csn 3619 class class class wbr 4030 “ cima 4663 Fn wfn 5250 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 |
This theorem is referenced by: fnimapr 5618 funfvdm 5621 fvco2 5627 fvimacnvi 5673 fsn2 5733 phplem4 6913 phplem4dom 6920 phplem4on 6925 fiintim 6987 fidcenumlemrks 7014 fidcenumlemr 7016 resunimafz0 10905 ennnfonelemhf1o 12573 |
Copyright terms: Public domain | W3C validator |