Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnsnfv | GIF version |
Description: Singleton of function value. (Contributed by NM, 22-May-1998.) |
Ref | Expression |
---|---|
fnsnfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2167 | . . . 4 ⊢ (𝑦 = (𝐹‘𝐵) ↔ (𝐹‘𝐵) = 𝑦) | |
2 | fnbrfvb 5527 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝑦 ↔ 𝐵𝐹𝑦)) | |
3 | 1, 2 | syl5bb 191 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝑦 = (𝐹‘𝐵) ↔ 𝐵𝐹𝑦)) |
4 | 3 | abbidv 2284 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝑦 ∣ 𝑦 = (𝐹‘𝐵)} = {𝑦 ∣ 𝐵𝐹𝑦}) |
5 | df-sn 3582 | . . 3 ⊢ {(𝐹‘𝐵)} = {𝑦 ∣ 𝑦 = (𝐹‘𝐵)} | |
6 | 5 | a1i 9 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = {𝑦 ∣ 𝑦 = (𝐹‘𝐵)}) |
7 | imasng 4969 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) | |
8 | 7 | adantl 275 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 “ {𝐵}) = {𝑦 ∣ 𝐵𝐹𝑦}) |
9 | 4, 6, 8 | 3eqtr4d 2208 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 {cab 2151 {csn 3576 class class class wbr 3982 “ cima 4607 Fn wfn 5183 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: fnimapr 5546 funfvdm 5549 fvco2 5555 fvimacnvi 5599 fsn2 5659 phplem4 6821 phplem4dom 6828 phplem4on 6833 fiintim 6894 fidcenumlemrks 6918 fidcenumlemr 6920 resunimafz0 10744 ennnfonelemhf1o 12346 |
Copyright terms: Public domain | W3C validator |