| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfsn2 | GIF version | ||
| Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
| Ref | Expression |
|---|---|
| dfsn2 | ⊢ {𝐴} = {𝐴, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3673 | . 2 ⊢ {𝐴, 𝐴} = ({𝐴} ∪ {𝐴}) | |
| 2 | unidm 3347 | . 2 ⊢ ({𝐴} ∪ {𝐴}) = {𝐴} | |
| 3 | 1, 2 | eqtr2i 2251 | 1 ⊢ {𝐴} = {𝐴, 𝐴} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∪ cun 3195 {csn 3666 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-pr 3673 |
| This theorem is referenced by: nfsn 3726 tpidm12 3765 tpidm 3768 preqsn 3852 opid 3874 unisn 3903 intsng 3956 opeqsn 4338 relop 4871 funopg 5351 funopsn 5816 enpr1g 6948 prfidceq 7086 hashprg 11025 upgrex 15897 umgrnloop0 15911 ifpsnprss 16040 bj-snexg 16233 |
| Copyright terms: Public domain | W3C validator |