| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfsn2 | GIF version | ||
| Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
| Ref | Expression |
|---|---|
| dfsn2 | ⊢ {𝐴} = {𝐴, 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3645 | . 2 ⊢ {𝐴, 𝐴} = ({𝐴} ∪ {𝐴}) | |
| 2 | unidm 3320 | . 2 ⊢ ({𝐴} ∪ {𝐴}) = {𝐴} | |
| 3 | 1, 2 | eqtr2i 2228 | 1 ⊢ {𝐴} = {𝐴, 𝐴} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3168 {csn 3638 {cpr 3639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-pr 3645 |
| This theorem is referenced by: nfsn 3698 tpidm12 3737 tpidm 3740 preqsn 3822 opid 3843 unisn 3872 intsng 3925 opeqsn 4305 relop 4836 funopg 5314 funopsn 5775 enpr1g 6903 prfidceq 7040 hashprg 10975 upgrex 15774 bj-snexg 15986 |
| Copyright terms: Public domain | W3C validator |