ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsn2 GIF version

Theorem dfsn2 3590
Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dfsn2 {𝐴} = {𝐴, 𝐴}

Proof of Theorem dfsn2
StepHypRef Expression
1 df-pr 3583 . 2 {𝐴, 𝐴} = ({𝐴} ∪ {𝐴})
2 unidm 3265 . 2 ({𝐴} ∪ {𝐴}) = {𝐴}
31, 2eqtr2i 2187 1 {𝐴} = {𝐴, 𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1343  cun 3114  {csn 3576  {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-pr 3583
This theorem is referenced by:  nfsn  3636  tpidm12  3675  tpidm  3678  preqsn  3755  opid  3776  unisn  3805  intsng  3858  opeqsn  4230  relop  4754  funopg  5222  enpr1g  6764  hashprg  10721  bj-snexg  13794
  Copyright terms: Public domain W3C validator