ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsn2 GIF version

Theorem dfsn2 3652
Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dfsn2 {𝐴} = {𝐴, 𝐴}

Proof of Theorem dfsn2
StepHypRef Expression
1 df-pr 3645 . 2 {𝐴, 𝐴} = ({𝐴} ∪ {𝐴})
2 unidm 3320 . 2 ({𝐴} ∪ {𝐴}) = {𝐴}
31, 2eqtr2i 2228 1 {𝐴} = {𝐴, 𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3168  {csn 3638  {cpr 3639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-pr 3645
This theorem is referenced by:  nfsn  3698  tpidm12  3737  tpidm  3740  preqsn  3822  opid  3843  unisn  3872  intsng  3925  opeqsn  4305  relop  4836  funopg  5314  funopsn  5775  enpr1g  6903  prfidceq  7040  hashprg  10975  upgrex  15774  bj-snexg  15986
  Copyright terms: Public domain W3C validator