ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsn2 GIF version

Theorem dfsn2 3680
Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dfsn2 {𝐴} = {𝐴, 𝐴}

Proof of Theorem dfsn2
StepHypRef Expression
1 df-pr 3673 . 2 {𝐴, 𝐴} = ({𝐴} ∪ {𝐴})
2 unidm 3347 . 2 ({𝐴} ∪ {𝐴}) = {𝐴}
31, 2eqtr2i 2251 1 {𝐴} = {𝐴, 𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1395  cun 3195  {csn 3666  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-pr 3673
This theorem is referenced by:  nfsn  3726  tpidm12  3765  tpidm  3768  preqsn  3852  opid  3874  unisn  3903  intsng  3956  opeqsn  4338  relop  4871  funopg  5351  funopsn  5816  enpr1g  6948  prfidceq  7086  hashprg  11025  upgrex  15897  umgrnloop0  15911  ifpsnprss  16040  bj-snexg  16233
  Copyright terms: Public domain W3C validator