ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsn2 GIF version

Theorem dfsn2 3636
Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dfsn2 {𝐴} = {𝐴, 𝐴}

Proof of Theorem dfsn2
StepHypRef Expression
1 df-pr 3629 . 2 {𝐴, 𝐴} = ({𝐴} ∪ {𝐴})
2 unidm 3306 . 2 ({𝐴} ∪ {𝐴}) = {𝐴}
31, 2eqtr2i 2218 1 {𝐴} = {𝐴, 𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  cun 3155  {csn 3622  {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-pr 3629
This theorem is referenced by:  nfsn  3682  tpidm12  3721  tpidm  3724  preqsn  3805  opid  3826  unisn  3855  intsng  3908  opeqsn  4285  relop  4816  funopg  5292  enpr1g  6857  prfidceq  6989  hashprg  10900  bj-snexg  15558
  Copyright terms: Public domain W3C validator