| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfsn2 | GIF version | ||
| Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| dfsn2 | ⊢ {𝐴} = {𝐴, 𝐴} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-pr 3629 | . 2 ⊢ {𝐴, 𝐴} = ({𝐴} ∪ {𝐴}) | |
| 2 | unidm 3306 | . 2 ⊢ ({𝐴} ∪ {𝐴}) = {𝐴} | |
| 3 | 1, 2 | eqtr2i 2218 | 1 ⊢ {𝐴} = {𝐴, 𝐴} | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∪ cun 3155 {csn 3622 {cpr 3623 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-pr 3629 | 
| This theorem is referenced by: nfsn 3682 tpidm12 3721 tpidm 3724 preqsn 3805 opid 3826 unisn 3855 intsng 3908 opeqsn 4285 relop 4816 funopg 5292 enpr1g 6857 prfidceq 6989 hashprg 10900 bj-snexg 15558 | 
| Copyright terms: Public domain | W3C validator |