ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw0 GIF version

Theorem pw0 3770
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pw0 𝒫 ∅ = {∅}

Proof of Theorem pw0
StepHypRef Expression
1 ss0b 3491 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
21abbii 2312 . 2 {𝑥𝑥 ⊆ ∅} = {𝑥𝑥 = ∅}
3 df-pw 3608 . 2 𝒫 ∅ = {𝑥𝑥 ⊆ ∅}
4 df-sn 3629 . 2 {∅} = {𝑥𝑥 = ∅}
52, 3, 43eqtr4i 2227 1 𝒫 ∅ = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  {cab 2182  wss 3157  c0 3451  𝒫 cpw 3606  {csn 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629
This theorem is referenced by:  p0ex  4222  sn0topon  14408  sn0cld  14457
  Copyright terms: Public domain W3C validator