ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw0 GIF version

Theorem pw0 3720
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pw0 𝒫 ∅ = {∅}

Proof of Theorem pw0
StepHypRef Expression
1 ss0b 3448 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
21abbii 2282 . 2 {𝑥𝑥 ⊆ ∅} = {𝑥𝑥 = ∅}
3 df-pw 3561 . 2 𝒫 ∅ = {𝑥𝑥 ⊆ ∅}
4 df-sn 3582 . 2 {∅} = {𝑥𝑥 = ∅}
52, 3, 43eqtr4i 2196 1 𝒫 ∅ = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1343  {cab 2151  wss 3116  c0 3409  𝒫 cpw 3559  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582
This theorem is referenced by:  p0ex  4167  sn0topon  12728  sn0cld  12777
  Copyright terms: Public domain W3C validator