Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pw0 | GIF version |
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
pw0 | ⊢ 𝒫 ∅ = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss0b 3448 | . . 3 ⊢ (𝑥 ⊆ ∅ ↔ 𝑥 = ∅) | |
2 | 1 | abbii 2282 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ ∅} = {𝑥 ∣ 𝑥 = ∅} |
3 | df-pw 3561 | . 2 ⊢ 𝒫 ∅ = {𝑥 ∣ 𝑥 ⊆ ∅} | |
4 | df-sn 3582 | . 2 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
5 | 2, 3, 4 | 3eqtr4i 2196 | 1 ⊢ 𝒫 ∅ = {∅} |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 {cab 2151 ⊆ wss 3116 ∅c0 3409 𝒫 cpw 3559 {csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 |
This theorem is referenced by: p0ex 4167 sn0topon 12728 sn0cld 12777 |
Copyright terms: Public domain | W3C validator |