ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw0 GIF version

Theorem pw0 3794
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pw0 𝒫 ∅ = {∅}

Proof of Theorem pw0
StepHypRef Expression
1 ss0b 3511 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
21abbii 2325 . 2 {𝑥𝑥 ⊆ ∅} = {𝑥𝑥 = ∅}
3 df-pw 3631 . 2 𝒫 ∅ = {𝑥𝑥 ⊆ ∅}
4 df-sn 3652 . 2 {∅} = {𝑥𝑥 = ∅}
52, 3, 43eqtr4i 2240 1 𝒫 ∅ = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1375  {cab 2195  wss 3177  c0 3471  𝒫 cpw 3629  {csn 3646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-dif 3179  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652
This theorem is referenced by:  p0ex  4251  sn0topon  14727  sn0cld  14776  pw0ss  15848
  Copyright terms: Public domain W3C validator