| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw0 | GIF version | ||
| Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| pw0 | ⊢ 𝒫 ∅ = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss0b 3511 | . . 3 ⊢ (𝑥 ⊆ ∅ ↔ 𝑥 = ∅) | |
| 2 | 1 | abbii 2325 | . 2 ⊢ {𝑥 ∣ 𝑥 ⊆ ∅} = {𝑥 ∣ 𝑥 = ∅} |
| 3 | df-pw 3631 | . 2 ⊢ 𝒫 ∅ = {𝑥 ∣ 𝑥 ⊆ ∅} | |
| 4 | df-sn 3652 | . 2 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
| 5 | 2, 3, 4 | 3eqtr4i 2240 | 1 ⊢ 𝒫 ∅ = {∅} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 {cab 2195 ⊆ wss 3177 ∅c0 3471 𝒫 cpw 3629 {csn 3646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-dif 3179 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 |
| This theorem is referenced by: p0ex 4251 sn0topon 14727 sn0cld 14776 pw0ss 15848 |
| Copyright terms: Public domain | W3C validator |