ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw0 GIF version

Theorem pw0 3727
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pw0 𝒫 ∅ = {∅}

Proof of Theorem pw0
StepHypRef Expression
1 ss0b 3454 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
21abbii 2286 . 2 {𝑥𝑥 ⊆ ∅} = {𝑥𝑥 = ∅}
3 df-pw 3568 . 2 𝒫 ∅ = {𝑥𝑥 ⊆ ∅}
4 df-sn 3589 . 2 {∅} = {𝑥𝑥 = ∅}
52, 3, 43eqtr4i 2201 1 𝒫 ∅ = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1348  {cab 2156  wss 3121  c0 3414  𝒫 cpw 3566  {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589
This theorem is referenced by:  p0ex  4174  sn0topon  12882  sn0cld  12931
  Copyright terms: Public domain W3C validator