ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw0 GIF version

Theorem pw0 3765
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pw0 𝒫 ∅ = {∅}

Proof of Theorem pw0
StepHypRef Expression
1 ss0b 3486 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
21abbii 2309 . 2 {𝑥𝑥 ⊆ ∅} = {𝑥𝑥 = ∅}
3 df-pw 3603 . 2 𝒫 ∅ = {𝑥𝑥 ⊆ ∅}
4 df-sn 3624 . 2 {∅} = {𝑥𝑥 = ∅}
52, 3, 43eqtr4i 2224 1 𝒫 ∅ = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1364  {cab 2179  wss 3153  c0 3446  𝒫 cpw 3601  {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624
This theorem is referenced by:  p0ex  4217  sn0topon  14256  sn0cld  14305
  Copyright terms: Public domain W3C validator