ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw0 GIF version

Theorem pw0 3782
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pw0 𝒫 ∅ = {∅}

Proof of Theorem pw0
StepHypRef Expression
1 ss0b 3501 . . 3 (𝑥 ⊆ ∅ ↔ 𝑥 = ∅)
21abbii 2322 . 2 {𝑥𝑥 ⊆ ∅} = {𝑥𝑥 = ∅}
3 df-pw 3619 . 2 𝒫 ∅ = {𝑥𝑥 ⊆ ∅}
4 df-sn 3640 . 2 {∅} = {𝑥𝑥 = ∅}
52, 3, 43eqtr4i 2237 1 𝒫 ∅ = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  {cab 2192  wss 3167  c0 3461  𝒫 cpw 3617  {csn 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3169  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640
This theorem is referenced by:  p0ex  4236  sn0topon  14604  sn0cld  14653  pw0ss  15723
  Copyright terms: Public domain W3C validator