ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniabio GIF version

Theorem uniabio 5170
Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
uniabio (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = 𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem uniabio
StepHypRef Expression
1 abbi 2284 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) ↔ {𝑥𝜑} = {𝑥𝑥 = 𝑦})
21biimpi 119 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑥𝑥 = 𝑦})
3 df-sn 3589 . . . 4 {𝑦} = {𝑥𝑥 = 𝑦}
42, 3eqtr4di 2221 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
54unieqd 3807 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
6 vex 2733 . . 3 𝑦 ∈ V
76unisn 3812 . 2 {𝑦} = 𝑦
85, 7eqtrdi 2219 1 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346   = wceq 1348  {cab 2156  {csn 3583   cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-uni 3797
This theorem is referenced by:  iotaval  5171  iotauni  5172
  Copyright terms: Public domain W3C validator