| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniabio | GIF version | ||
| Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| uniabio | ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbi 2343 | . . . . 5 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) | |
| 2 | 1 | biimpi 120 | . . . 4 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝑥 = 𝑦}) |
| 3 | df-sn 3672 | . . . 4 ⊢ {𝑦} = {𝑥 ∣ 𝑥 = 𝑦} | |
| 4 | 2, 3 | eqtr4di 2280 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} = {𝑦}) |
| 5 | 4 | unieqd 3898 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = ∪ {𝑦}) |
| 6 | vex 2802 | . . 3 ⊢ 𝑦 ∈ V | |
| 7 | 6 | unisn 3903 | . 2 ⊢ ∪ {𝑦} = 𝑦 |
| 8 | 5, 7 | eqtrdi 2278 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∪ {𝑥 ∣ 𝜑} = 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 = wceq 1395 {cab 2215 {csn 3666 ∪ cuni 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-uni 3888 |
| This theorem is referenced by: iotaval 5286 iotauni 5287 |
| Copyright terms: Public domain | W3C validator |