ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniabio GIF version

Theorem uniabio 5225
Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
uniabio (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = 𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem uniabio
StepHypRef Expression
1 abbi 2307 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) ↔ {𝑥𝜑} = {𝑥𝑥 = 𝑦})
21biimpi 120 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑥𝑥 = 𝑦})
3 df-sn 3624 . . . 4 {𝑦} = {𝑥𝑥 = 𝑦}
42, 3eqtr4di 2244 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
54unieqd 3846 . 2 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = {𝑦})
6 vex 2763 . . 3 𝑦 ∈ V
76unisn 3851 . 2 {𝑦} = 𝑦
85, 7eqtrdi 2242 1 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364  {cab 2179  {csn 3618   cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-uni 3836
This theorem is referenced by:  iotaval  5226  iotauni  5227
  Copyright terms: Public domain W3C validator