| Step | Hyp | Ref
| Expression |
| 1 | | exmidexmid 4229 |
. . . . . . . . 9
⊢
(EXMID → DECID ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o) |
| 2 | | exmiddc 837 |
. . . . . . . . 9
⊢
(DECID ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o ∨ ¬ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o)) |
| 3 | 1, 2 | syl 14 |
. . . . . . . 8
⊢
(EXMID → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o ∨ ¬ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o)) |
| 4 | 3 | orcomd 730 |
. . . . . . 7
⊢
(EXMID → (¬ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o)) |
| 5 | 4 | adantr 276 |
. . . . . 6
⊢
((EXMID ∧ 𝑓:𝑥⟶2o) → (¬
∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o)) |
| 6 | | ffvelcdm 5695 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝑥⟶2o ∧ 𝑦 ∈ 𝑥) → (𝑓‘𝑦) ∈ 2o) |
| 7 | | df2o3 6488 |
. . . . . . . . . . . . . 14
⊢
2o = {∅, 1o} |
| 8 | 6, 7 | eleqtrdi 2289 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝑥⟶2o ∧ 𝑦 ∈ 𝑥) → (𝑓‘𝑦) ∈ {∅,
1o}) |
| 9 | | elpri 3645 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑦) ∈ {∅, 1o} →
((𝑓‘𝑦) = ∅ ∨ (𝑓‘𝑦) = 1o)) |
| 10 | 8, 9 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝑓:𝑥⟶2o ∧ 𝑦 ∈ 𝑥) → ((𝑓‘𝑦) = ∅ ∨ (𝑓‘𝑦) = 1o)) |
| 11 | 10 | ord 725 |
. . . . . . . . . . 11
⊢ ((𝑓:𝑥⟶2o ∧ 𝑦 ∈ 𝑥) → (¬ (𝑓‘𝑦) = ∅ → (𝑓‘𝑦) = 1o)) |
| 12 | 11 | ralimdva 2564 |
. . . . . . . . . 10
⊢ (𝑓:𝑥⟶2o → (∀𝑦 ∈ 𝑥 ¬ (𝑓‘𝑦) = ∅ → ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o)) |
| 13 | 12 | con3d 632 |
. . . . . . . . 9
⊢ (𝑓:𝑥⟶2o → (¬
∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o → ¬ ∀𝑦 ∈ 𝑥 ¬ (𝑓‘𝑦) = ∅)) |
| 14 | 13 | adantl 277 |
. . . . . . . 8
⊢
((EXMID ∧ 𝑓:𝑥⟶2o) → (¬
∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o → ¬ ∀𝑦 ∈ 𝑥 ¬ (𝑓‘𝑦) = ∅)) |
| 15 | | exmidexmid 4229 |
. . . . . . . . . 10
⊢
(EXMID → DECID ∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅) |
| 16 | | dfrex2dc 2488 |
. . . . . . . . . 10
⊢
(DECID ∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ↔ ¬ ∀𝑦 ∈ 𝑥 ¬ (𝑓‘𝑦) = ∅)) |
| 17 | 15, 16 | syl 14 |
. . . . . . . . 9
⊢
(EXMID → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ↔ ¬ ∀𝑦 ∈ 𝑥 ¬ (𝑓‘𝑦) = ∅)) |
| 18 | 17 | adantr 276 |
. . . . . . . 8
⊢
((EXMID ∧ 𝑓:𝑥⟶2o) → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ↔ ¬ ∀𝑦 ∈ 𝑥 ¬ (𝑓‘𝑦) = ∅)) |
| 19 | 14, 18 | sylibrd 169 |
. . . . . . 7
⊢
((EXMID ∧ 𝑓:𝑥⟶2o) → (¬
∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o → ∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅)) |
| 20 | 19 | orim1d 788 |
. . . . . 6
⊢
((EXMID ∧ 𝑓:𝑥⟶2o) → ((¬
∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o) → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o))) |
| 21 | 5, 20 | mpd 13 |
. . . . 5
⊢
((EXMID ∧ 𝑓:𝑥⟶2o) → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o)) |
| 22 | 21 | ex 115 |
. . . 4
⊢
(EXMID → (𝑓:𝑥⟶2o → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o))) |
| 23 | 22 | alrimiv 1888 |
. . 3
⊢
(EXMID → ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o))) |
| 24 | | isomni 7202 |
. . . 4
⊢ (𝑥 ∈ V → (𝑥 ∈ Omni ↔
∀𝑓(𝑓:𝑥⟶2o → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o)))) |
| 25 | 24 | elv 2767 |
. . 3
⊢ (𝑥 ∈ Omni ↔
∀𝑓(𝑓:𝑥⟶2o → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o))) |
| 26 | 23, 25 | sylibr 134 |
. 2
⊢
(EXMID → 𝑥 ∈ Omni) |
| 27 | 26 | alrimiv 1888 |
1
⊢
(EXMID → ∀𝑥 𝑥 ∈ Omni) |