Step | Hyp | Ref
| Expression |
1 | | exmidexmid 4175 |
. . . . . . . . 9
⊢
(EXMID → DECID ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o) |
2 | | exmiddc 826 |
. . . . . . . . 9
⊢
(DECID ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o ∨ ¬ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o)) |
3 | 1, 2 | syl 14 |
. . . . . . . 8
⊢
(EXMID → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o ∨ ¬ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o)) |
4 | 3 | orcomd 719 |
. . . . . . 7
⊢
(EXMID → (¬ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o)) |
5 | 4 | adantr 274 |
. . . . . 6
⊢
((EXMID ∧ 𝑓:𝑥⟶2o) → (¬
∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o)) |
6 | | ffvelrn 5618 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝑥⟶2o ∧ 𝑦 ∈ 𝑥) → (𝑓‘𝑦) ∈ 2o) |
7 | | df2o3 6398 |
. . . . . . . . . . . . . 14
⊢
2o = {∅, 1o} |
8 | 6, 7 | eleqtrdi 2259 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝑥⟶2o ∧ 𝑦 ∈ 𝑥) → (𝑓‘𝑦) ∈ {∅,
1o}) |
9 | | elpri 3599 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑦) ∈ {∅, 1o} →
((𝑓‘𝑦) = ∅ ∨ (𝑓‘𝑦) = 1o)) |
10 | 8, 9 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝑓:𝑥⟶2o ∧ 𝑦 ∈ 𝑥) → ((𝑓‘𝑦) = ∅ ∨ (𝑓‘𝑦) = 1o)) |
11 | 10 | ord 714 |
. . . . . . . . . . 11
⊢ ((𝑓:𝑥⟶2o ∧ 𝑦 ∈ 𝑥) → (¬ (𝑓‘𝑦) = ∅ → (𝑓‘𝑦) = 1o)) |
12 | 11 | ralimdva 2533 |
. . . . . . . . . 10
⊢ (𝑓:𝑥⟶2o → (∀𝑦 ∈ 𝑥 ¬ (𝑓‘𝑦) = ∅ → ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o)) |
13 | 12 | con3d 621 |
. . . . . . . . 9
⊢ (𝑓:𝑥⟶2o → (¬
∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o → ¬ ∀𝑦 ∈ 𝑥 ¬ (𝑓‘𝑦) = ∅)) |
14 | 13 | adantl 275 |
. . . . . . . 8
⊢
((EXMID ∧ 𝑓:𝑥⟶2o) → (¬
∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o → ¬ ∀𝑦 ∈ 𝑥 ¬ (𝑓‘𝑦) = ∅)) |
15 | | exmidexmid 4175 |
. . . . . . . . . 10
⊢
(EXMID → DECID ∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅) |
16 | | dfrex2dc 2457 |
. . . . . . . . . 10
⊢
(DECID ∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ↔ ¬ ∀𝑦 ∈ 𝑥 ¬ (𝑓‘𝑦) = ∅)) |
17 | 15, 16 | syl 14 |
. . . . . . . . 9
⊢
(EXMID → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ↔ ¬ ∀𝑦 ∈ 𝑥 ¬ (𝑓‘𝑦) = ∅)) |
18 | 17 | adantr 274 |
. . . . . . . 8
⊢
((EXMID ∧ 𝑓:𝑥⟶2o) → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ↔ ¬ ∀𝑦 ∈ 𝑥 ¬ (𝑓‘𝑦) = ∅)) |
19 | 14, 18 | sylibrd 168 |
. . . . . . 7
⊢
((EXMID ∧ 𝑓:𝑥⟶2o) → (¬
∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o → ∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅)) |
20 | 19 | orim1d 777 |
. . . . . 6
⊢
((EXMID ∧ 𝑓:𝑥⟶2o) → ((¬
∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o) → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o))) |
21 | 5, 20 | mpd 13 |
. . . . 5
⊢
((EXMID ∧ 𝑓:𝑥⟶2o) → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o)) |
22 | 21 | ex 114 |
. . . 4
⊢
(EXMID → (𝑓:𝑥⟶2o → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o))) |
23 | 22 | alrimiv 1862 |
. . 3
⊢
(EXMID → ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o))) |
24 | | isomni 7100 |
. . . 4
⊢ (𝑥 ∈ V → (𝑥 ∈ Omni ↔
∀𝑓(𝑓:𝑥⟶2o → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o)))) |
25 | 24 | elv 2730 |
. . 3
⊢ (𝑥 ∈ Omni ↔
∀𝑓(𝑓:𝑥⟶2o → (∃𝑦 ∈ 𝑥 (𝑓‘𝑦) = ∅ ∨ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = 1o))) |
26 | 23, 25 | sylibr 133 |
. 2
⊢
(EXMID → 𝑥 ∈ Omni) |
27 | 26 | alrimiv 1862 |
1
⊢
(EXMID → ∀𝑥 𝑥 ∈ Omni) |