ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidomniim GIF version

Theorem exmidomniim 7105
Description: Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7106. (Contributed by Jim Kingdon, 29-Jun-2022.)
Assertion
Ref Expression
exmidomniim (EXMID → ∀𝑥 𝑥 ∈ Omni)

Proof of Theorem exmidomniim
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exmidexmid 4175 . . . . . . . . 9 (EXMIDDECID𝑦𝑥 (𝑓𝑦) = 1o)
2 exmiddc 826 . . . . . . . . 9 (DECID𝑦𝑥 (𝑓𝑦) = 1o → (∀𝑦𝑥 (𝑓𝑦) = 1o ∨ ¬ ∀𝑦𝑥 (𝑓𝑦) = 1o))
31, 2syl 14 . . . . . . . 8 (EXMID → (∀𝑦𝑥 (𝑓𝑦) = 1o ∨ ¬ ∀𝑦𝑥 (𝑓𝑦) = 1o))
43orcomd 719 . . . . . . 7 (EXMID → (¬ ∀𝑦𝑥 (𝑓𝑦) = 1o ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o))
54adantr 274 . . . . . 6 ((EXMID𝑓:𝑥⟶2o) → (¬ ∀𝑦𝑥 (𝑓𝑦) = 1o ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o))
6 ffvelrn 5618 . . . . . . . . . . . . . 14 ((𝑓:𝑥⟶2o𝑦𝑥) → (𝑓𝑦) ∈ 2o)
7 df2o3 6398 . . . . . . . . . . . . . 14 2o = {∅, 1o}
86, 7eleqtrdi 2259 . . . . . . . . . . . . 13 ((𝑓:𝑥⟶2o𝑦𝑥) → (𝑓𝑦) ∈ {∅, 1o})
9 elpri 3599 . . . . . . . . . . . . 13 ((𝑓𝑦) ∈ {∅, 1o} → ((𝑓𝑦) = ∅ ∨ (𝑓𝑦) = 1o))
108, 9syl 14 . . . . . . . . . . . 12 ((𝑓:𝑥⟶2o𝑦𝑥) → ((𝑓𝑦) = ∅ ∨ (𝑓𝑦) = 1o))
1110ord 714 . . . . . . . . . . 11 ((𝑓:𝑥⟶2o𝑦𝑥) → (¬ (𝑓𝑦) = ∅ → (𝑓𝑦) = 1o))
1211ralimdva 2533 . . . . . . . . . 10 (𝑓:𝑥⟶2o → (∀𝑦𝑥 ¬ (𝑓𝑦) = ∅ → ∀𝑦𝑥 (𝑓𝑦) = 1o))
1312con3d 621 . . . . . . . . 9 (𝑓:𝑥⟶2o → (¬ ∀𝑦𝑥 (𝑓𝑦) = 1o → ¬ ∀𝑦𝑥 ¬ (𝑓𝑦) = ∅))
1413adantl 275 . . . . . . . 8 ((EXMID𝑓:𝑥⟶2o) → (¬ ∀𝑦𝑥 (𝑓𝑦) = 1o → ¬ ∀𝑦𝑥 ¬ (𝑓𝑦) = ∅))
15 exmidexmid 4175 . . . . . . . . . 10 (EXMIDDECID𝑦𝑥 (𝑓𝑦) = ∅)
16 dfrex2dc 2457 . . . . . . . . . 10 (DECID𝑦𝑥 (𝑓𝑦) = ∅ → (∃𝑦𝑥 (𝑓𝑦) = ∅ ↔ ¬ ∀𝑦𝑥 ¬ (𝑓𝑦) = ∅))
1715, 16syl 14 . . . . . . . . 9 (EXMID → (∃𝑦𝑥 (𝑓𝑦) = ∅ ↔ ¬ ∀𝑦𝑥 ¬ (𝑓𝑦) = ∅))
1817adantr 274 . . . . . . . 8 ((EXMID𝑓:𝑥⟶2o) → (∃𝑦𝑥 (𝑓𝑦) = ∅ ↔ ¬ ∀𝑦𝑥 ¬ (𝑓𝑦) = ∅))
1914, 18sylibrd 168 . . . . . . 7 ((EXMID𝑓:𝑥⟶2o) → (¬ ∀𝑦𝑥 (𝑓𝑦) = 1o → ∃𝑦𝑥 (𝑓𝑦) = ∅))
2019orim1d 777 . . . . . 6 ((EXMID𝑓:𝑥⟶2o) → ((¬ ∀𝑦𝑥 (𝑓𝑦) = 1o ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o) → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
215, 20mpd 13 . . . . 5 ((EXMID𝑓:𝑥⟶2o) → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o))
2221ex 114 . . . 4 (EXMID → (𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
2322alrimiv 1862 . . 3 (EXMID → ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
24 isomni 7100 . . . 4 (𝑥 ∈ V → (𝑥 ∈ Omni ↔ ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o))))
2524elv 2730 . . 3 (𝑥 ∈ Omni ↔ ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
2623, 25sylibr 133 . 2 (EXMID𝑥 ∈ Omni)
2726alrimiv 1862 1 (EXMID → ∀𝑥 𝑥 ∈ Omni)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824  wal 1341   = wceq 1343  wcel 2136  wral 2444  wrex 2445  Vcvv 2726  c0 3409  {cpr 3577  EXMIDwem 4173  wf 5184  cfv 5188  1oc1o 6377  2oc2o 6378  Omnicomni 7098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-exmid 4174  df-id 4271  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-1o 6384  df-2o 6385  df-omni 7099
This theorem is referenced by:  exmidomni  7106
  Copyright terms: Public domain W3C validator