ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidomniim GIF version

Theorem exmidomniim 7216
Description: Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7217. (Contributed by Jim Kingdon, 29-Jun-2022.)
Assertion
Ref Expression
exmidomniim (EXMID → ∀𝑥 𝑥 ∈ Omni)

Proof of Theorem exmidomniim
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exmidexmid 4230 . . . . . . . . 9 (EXMIDDECID𝑦𝑥 (𝑓𝑦) = 1o)
2 exmiddc 837 . . . . . . . . 9 (DECID𝑦𝑥 (𝑓𝑦) = 1o → (∀𝑦𝑥 (𝑓𝑦) = 1o ∨ ¬ ∀𝑦𝑥 (𝑓𝑦) = 1o))
31, 2syl 14 . . . . . . . 8 (EXMID → (∀𝑦𝑥 (𝑓𝑦) = 1o ∨ ¬ ∀𝑦𝑥 (𝑓𝑦) = 1o))
43orcomd 730 . . . . . . 7 (EXMID → (¬ ∀𝑦𝑥 (𝑓𝑦) = 1o ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o))
54adantr 276 . . . . . 6 ((EXMID𝑓:𝑥⟶2o) → (¬ ∀𝑦𝑥 (𝑓𝑦) = 1o ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o))
6 ffvelcdm 5698 . . . . . . . . . . . . . 14 ((𝑓:𝑥⟶2o𝑦𝑥) → (𝑓𝑦) ∈ 2o)
7 df2o3 6497 . . . . . . . . . . . . . 14 2o = {∅, 1o}
86, 7eleqtrdi 2289 . . . . . . . . . . . . 13 ((𝑓:𝑥⟶2o𝑦𝑥) → (𝑓𝑦) ∈ {∅, 1o})
9 elpri 3646 . . . . . . . . . . . . 13 ((𝑓𝑦) ∈ {∅, 1o} → ((𝑓𝑦) = ∅ ∨ (𝑓𝑦) = 1o))
108, 9syl 14 . . . . . . . . . . . 12 ((𝑓:𝑥⟶2o𝑦𝑥) → ((𝑓𝑦) = ∅ ∨ (𝑓𝑦) = 1o))
1110ord 725 . . . . . . . . . . 11 ((𝑓:𝑥⟶2o𝑦𝑥) → (¬ (𝑓𝑦) = ∅ → (𝑓𝑦) = 1o))
1211ralimdva 2564 . . . . . . . . . 10 (𝑓:𝑥⟶2o → (∀𝑦𝑥 ¬ (𝑓𝑦) = ∅ → ∀𝑦𝑥 (𝑓𝑦) = 1o))
1312con3d 632 . . . . . . . . 9 (𝑓:𝑥⟶2o → (¬ ∀𝑦𝑥 (𝑓𝑦) = 1o → ¬ ∀𝑦𝑥 ¬ (𝑓𝑦) = ∅))
1413adantl 277 . . . . . . . 8 ((EXMID𝑓:𝑥⟶2o) → (¬ ∀𝑦𝑥 (𝑓𝑦) = 1o → ¬ ∀𝑦𝑥 ¬ (𝑓𝑦) = ∅))
15 exmidexmid 4230 . . . . . . . . . 10 (EXMIDDECID𝑦𝑥 (𝑓𝑦) = ∅)
16 dfrex2dc 2488 . . . . . . . . . 10 (DECID𝑦𝑥 (𝑓𝑦) = ∅ → (∃𝑦𝑥 (𝑓𝑦) = ∅ ↔ ¬ ∀𝑦𝑥 ¬ (𝑓𝑦) = ∅))
1715, 16syl 14 . . . . . . . . 9 (EXMID → (∃𝑦𝑥 (𝑓𝑦) = ∅ ↔ ¬ ∀𝑦𝑥 ¬ (𝑓𝑦) = ∅))
1817adantr 276 . . . . . . . 8 ((EXMID𝑓:𝑥⟶2o) → (∃𝑦𝑥 (𝑓𝑦) = ∅ ↔ ¬ ∀𝑦𝑥 ¬ (𝑓𝑦) = ∅))
1914, 18sylibrd 169 . . . . . . 7 ((EXMID𝑓:𝑥⟶2o) → (¬ ∀𝑦𝑥 (𝑓𝑦) = 1o → ∃𝑦𝑥 (𝑓𝑦) = ∅))
2019orim1d 788 . . . . . 6 ((EXMID𝑓:𝑥⟶2o) → ((¬ ∀𝑦𝑥 (𝑓𝑦) = 1o ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o) → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
215, 20mpd 13 . . . . 5 ((EXMID𝑓:𝑥⟶2o) → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o))
2221ex 115 . . . 4 (EXMID → (𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
2322alrimiv 1888 . . 3 (EXMID → ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
24 isomni 7211 . . . 4 (𝑥 ∈ V → (𝑥 ∈ Omni ↔ ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o))))
2524elv 2767 . . 3 (𝑥 ∈ Omni ↔ ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
2623, 25sylibr 134 . 2 (EXMID𝑥 ∈ Omni)
2726alrimiv 1888 1 (EXMID → ∀𝑥 𝑥 ∈ Omni)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  wal 1362   = wceq 1364  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  c0 3451  {cpr 3624  EXMIDwem 4228  wf 5255  cfv 5259  1oc1o 6476  2oc2o 6477  Omnicomni 7209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-exmid 4229  df-id 4329  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-1o 6483  df-2o 6484  df-omni 7210
This theorem is referenced by:  exmidomni  7217
  Copyright terms: Public domain W3C validator