ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidomniim GIF version

Theorem exmidomniim 7276
Description: Given excluded middle, every set is omniscient. Remark following Definition 3.1 of [Pierik], p. 14. This is one direction of the biconditional exmidomni 7277. (Contributed by Jim Kingdon, 29-Jun-2022.)
Assertion
Ref Expression
exmidomniim (EXMID → ∀𝑥 𝑥 ∈ Omni)

Proof of Theorem exmidomniim
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exmidexmid 4259 . . . . . . . . 9 (EXMIDDECID𝑦𝑥 (𝑓𝑦) = 1o)
2 exmiddc 840 . . . . . . . . 9 (DECID𝑦𝑥 (𝑓𝑦) = 1o → (∀𝑦𝑥 (𝑓𝑦) = 1o ∨ ¬ ∀𝑦𝑥 (𝑓𝑦) = 1o))
31, 2syl 14 . . . . . . . 8 (EXMID → (∀𝑦𝑥 (𝑓𝑦) = 1o ∨ ¬ ∀𝑦𝑥 (𝑓𝑦) = 1o))
43orcomd 733 . . . . . . 7 (EXMID → (¬ ∀𝑦𝑥 (𝑓𝑦) = 1o ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o))
54adantr 276 . . . . . 6 ((EXMID𝑓:𝑥⟶2o) → (¬ ∀𝑦𝑥 (𝑓𝑦) = 1o ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o))
6 ffvelcdm 5741 . . . . . . . . . . . . . 14 ((𝑓:𝑥⟶2o𝑦𝑥) → (𝑓𝑦) ∈ 2o)
7 df2o3 6546 . . . . . . . . . . . . . 14 2o = {∅, 1o}
86, 7eleqtrdi 2302 . . . . . . . . . . . . 13 ((𝑓:𝑥⟶2o𝑦𝑥) → (𝑓𝑦) ∈ {∅, 1o})
9 elpri 3669 . . . . . . . . . . . . 13 ((𝑓𝑦) ∈ {∅, 1o} → ((𝑓𝑦) = ∅ ∨ (𝑓𝑦) = 1o))
108, 9syl 14 . . . . . . . . . . . 12 ((𝑓:𝑥⟶2o𝑦𝑥) → ((𝑓𝑦) = ∅ ∨ (𝑓𝑦) = 1o))
1110ord 728 . . . . . . . . . . 11 ((𝑓:𝑥⟶2o𝑦𝑥) → (¬ (𝑓𝑦) = ∅ → (𝑓𝑦) = 1o))
1211ralimdva 2577 . . . . . . . . . 10 (𝑓:𝑥⟶2o → (∀𝑦𝑥 ¬ (𝑓𝑦) = ∅ → ∀𝑦𝑥 (𝑓𝑦) = 1o))
1312con3d 634 . . . . . . . . 9 (𝑓:𝑥⟶2o → (¬ ∀𝑦𝑥 (𝑓𝑦) = 1o → ¬ ∀𝑦𝑥 ¬ (𝑓𝑦) = ∅))
1413adantl 277 . . . . . . . 8 ((EXMID𝑓:𝑥⟶2o) → (¬ ∀𝑦𝑥 (𝑓𝑦) = 1o → ¬ ∀𝑦𝑥 ¬ (𝑓𝑦) = ∅))
15 exmidexmid 4259 . . . . . . . . . 10 (EXMIDDECID𝑦𝑥 (𝑓𝑦) = ∅)
16 dfrex2dc 2501 . . . . . . . . . 10 (DECID𝑦𝑥 (𝑓𝑦) = ∅ → (∃𝑦𝑥 (𝑓𝑦) = ∅ ↔ ¬ ∀𝑦𝑥 ¬ (𝑓𝑦) = ∅))
1715, 16syl 14 . . . . . . . . 9 (EXMID → (∃𝑦𝑥 (𝑓𝑦) = ∅ ↔ ¬ ∀𝑦𝑥 ¬ (𝑓𝑦) = ∅))
1817adantr 276 . . . . . . . 8 ((EXMID𝑓:𝑥⟶2o) → (∃𝑦𝑥 (𝑓𝑦) = ∅ ↔ ¬ ∀𝑦𝑥 ¬ (𝑓𝑦) = ∅))
1914, 18sylibrd 169 . . . . . . 7 ((EXMID𝑓:𝑥⟶2o) → (¬ ∀𝑦𝑥 (𝑓𝑦) = 1o → ∃𝑦𝑥 (𝑓𝑦) = ∅))
2019orim1d 791 . . . . . 6 ((EXMID𝑓:𝑥⟶2o) → ((¬ ∀𝑦𝑥 (𝑓𝑦) = 1o ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o) → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
215, 20mpd 13 . . . . 5 ((EXMID𝑓:𝑥⟶2o) → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o))
2221ex 115 . . . 4 (EXMID → (𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
2322alrimiv 1900 . . 3 (EXMID → ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
24 isomni 7271 . . . 4 (𝑥 ∈ V → (𝑥 ∈ Omni ↔ ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o))))
2524elv 2783 . . 3 (𝑥 ∈ Omni ↔ ∀𝑓(𝑓:𝑥⟶2o → (∃𝑦𝑥 (𝑓𝑦) = ∅ ∨ ∀𝑦𝑥 (𝑓𝑦) = 1o)))
2623, 25sylibr 134 . 2 (EXMID𝑥 ∈ Omni)
2726alrimiv 1900 1 (EXMID → ∀𝑥 𝑥 ∈ Omni)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 712  DECID wdc 838  wal 1373   = wceq 1375  wcel 2180  wral 2488  wrex 2489  Vcvv 2779  c0 3471  {cpr 3647  EXMIDwem 4257  wf 5290  cfv 5294  1oc1o 6525  2oc2o 6526  Omnicomni 7269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-exmid 4258  df-id 4361  df-suc 4439  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-1o 6532  df-2o 6533  df-omni 7270
This theorem is referenced by:  exmidomni  7277
  Copyright terms: Public domain W3C validator