| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sb7af | GIF version | ||
| Description: An alternate definition of proper substitution df-sb 1787. Similar to dfsb7a 2023 but does not require that 𝜑 and 𝑧 be distinct. Similar to sb7f 2021 in that it involves a dummy variable 𝑧, but expressed in terms of ∀ rather than ∃. (Contributed by Jim Kingdon, 5-Feb-2018.) |
| Ref | Expression |
|---|---|
| sb7af.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| sb7af | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 1911 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑧 → 𝜑)) | |
| 2 | 1 | sbbii 1789 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧]∀𝑥(𝑥 = 𝑧 → 𝜑)) |
| 3 | sb7af.1 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 4 | 3 | sbco2 1994 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 5 | sb6 1911 | . 2 ⊢ ([𝑦 / 𝑧]∀𝑥(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | |
| 6 | 2, 4, 5 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 Ⅎwnf 1484 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: dfsb7a 2023 |
| Copyright terms: Public domain | W3C validator |