| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sb7af | GIF version | ||
| Description: An alternate definition of proper substitution df-sb 1809. Similar to dfsb7a 2045 but does not require that 𝜑 and 𝑧 be distinct. Similar to sb7f 2043 in that it involves a dummy variable 𝑧, but expressed in terms of ∀ rather than ∃. (Contributed by Jim Kingdon, 5-Feb-2018.) |
| Ref | Expression |
|---|---|
| sb7af.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| sb7af | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 1933 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑧 → 𝜑)) | |
| 2 | 1 | sbbii 1811 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧]∀𝑥(𝑥 = 𝑧 → 𝜑)) |
| 3 | sb7af.1 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 4 | 3 | sbco2 2016 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 5 | sb6 1933 | . 2 ⊢ ([𝑦 / 𝑧]∀𝑥(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | |
| 6 | 2, 4, 5 | 3bitr3i 210 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1393 Ⅎwnf 1506 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: dfsb7a 2045 |
| Copyright terms: Public domain | W3C validator |