ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb7af GIF version

Theorem sb7af 2012
Description: An alternate definition of proper substitution df-sb 1777. Similar to dfsb7a 2013 but does not require that 𝜑 and 𝑧 be distinct. Similar to sb7f 2011 in that it involves a dummy variable 𝑧, but expressed in terms of rather than . (Contributed by Jim Kingdon, 5-Feb-2018.)
Hypothesis
Ref Expression
sb7af.1 𝑧𝜑
Assertion
Ref Expression
sb7af ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sb7af
StepHypRef Expression
1 sb6 1901 . . 3 ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑧𝜑))
21sbbii 1779 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧]∀𝑥(𝑥 = 𝑧𝜑))
3 sb7af.1 . . 3 𝑧𝜑
43sbco2 1984 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
5 sb6 1901 . 2 ([𝑦 / 𝑧]∀𝑥(𝑥 = 𝑧𝜑) ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
62, 4, 53bitr3i 210 1 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362  wnf 1474  [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by:  dfsb7a  2013
  Copyright terms: Public domain W3C validator