Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sb7af | GIF version |
Description: An alternate definition of proper substitution df-sb 1751. Similar to dfsb7a 1982 but does not require that 𝜑 and 𝑧 be distinct. Similar to sb7f 1980 in that it involves a dummy variable 𝑧, but expressed in terms of ∀ rather than ∃. (Contributed by Jim Kingdon, 5-Feb-2018.) |
Ref | Expression |
---|---|
sb7af.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
sb7af | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 1874 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑧 → 𝜑)) | |
2 | 1 | sbbii 1753 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧]∀𝑥(𝑥 = 𝑧 → 𝜑)) |
3 | sb7af.1 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
4 | 3 | sbco2 1953 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
5 | sb6 1874 | . 2 ⊢ ([𝑦 / 𝑧]∀𝑥(𝑥 = 𝑧 → 𝜑) ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | |
6 | 2, 4, 5 | 3bitr3i 209 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 Ⅎwnf 1448 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 |
This theorem is referenced by: dfsb7a 1982 |
Copyright terms: Public domain | W3C validator |