ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vpwex GIF version

Theorem vpwex 4103
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4104 from vpwex 4103. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex 𝒫 𝑥 ∈ V

Proof of Theorem vpwex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 3512 . 2 𝒫 𝑥 = {𝑦𝑦𝑥}
2 axpow2 4100 . . . . 5 𝑧𝑦(𝑦𝑥𝑦𝑧)
32bm1.3ii 4049 . . . 4 𝑧𝑦(𝑦𝑧𝑦𝑥)
4 abeq2 2248 . . . . 5 (𝑧 = {𝑦𝑦𝑥} ↔ ∀𝑦(𝑦𝑧𝑦𝑥))
54exbii 1584 . . . 4 (∃𝑧 𝑧 = {𝑦𝑦𝑥} ↔ ∃𝑧𝑦(𝑦𝑧𝑦𝑥))
63, 5mpbir 145 . . 3 𝑧 𝑧 = {𝑦𝑦𝑥}
76issetri 2695 . 2 {𝑦𝑦𝑥} ∈ V
81, 7eqeltri 2212 1 𝒫 𝑥 ∈ V
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1329   = wceq 1331  wex 1468  wcel 1480  {cab 2125  Vcvv 2686  wss 3071  𝒫 cpw 3510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-11 1484  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-v 2688  df-in 3077  df-ss 3084  df-pw 3512
This theorem is referenced by:  pwexg  4104  pwnex  4370  istopon  12180  dmtopon  12190  tgdom  12241
  Copyright terms: Public domain W3C validator