ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vpwex GIF version

Theorem vpwex 4222
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4223 from vpwex 4222. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex 𝒫 𝑥 ∈ V

Proof of Theorem vpwex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 3617 . 2 𝒫 𝑥 = {𝑦𝑦𝑥}
2 axpow2 4219 . . . . 5 𝑧𝑦(𝑦𝑥𝑦𝑧)
32bm1.3ii 4164 . . . 4 𝑧𝑦(𝑦𝑧𝑦𝑥)
4 abeq2 2313 . . . . 5 (𝑧 = {𝑦𝑦𝑥} ↔ ∀𝑦(𝑦𝑧𝑦𝑥))
54exbii 1627 . . . 4 (∃𝑧 𝑧 = {𝑦𝑦𝑥} ↔ ∃𝑧𝑦(𝑦𝑧𝑦𝑥))
63, 5mpbir 146 . . 3 𝑧 𝑧 = {𝑦𝑦𝑥}
76issetri 2780 . 2 {𝑦𝑦𝑥} ∈ V
81, 7eqeltri 2277 1 𝒫 𝑥 ∈ V
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1370   = wceq 1372  wex 1514  wcel 2175  {cab 2190  Vcvv 2771  wss 3165  𝒫 cpw 3615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617
This theorem is referenced by:  pwexg  4223  pwnex  4495  exmidpw2en  7008  metuex  14288  istopon  14456  dmtopon  14466  tgdom  14515
  Copyright terms: Public domain W3C validator