| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vpwex | GIF version | ||
| Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4263 from vpwex 4262. (Revised by BJ, 10-Aug-2022.) |
| Ref | Expression |
|---|---|
| vpwex | ⊢ 𝒫 𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pw 3651 | . 2 ⊢ 𝒫 𝑥 = {𝑦 ∣ 𝑦 ⊆ 𝑥} | |
| 2 | axpow2 4259 | . . . . 5 ⊢ ∃𝑧∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑧) | |
| 3 | 2 | bm1.3ii 4204 | . . . 4 ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ⊆ 𝑥) |
| 4 | abeq2 2338 | . . . . 5 ⊢ (𝑧 = {𝑦 ∣ 𝑦 ⊆ 𝑥} ↔ ∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ⊆ 𝑥)) | |
| 5 | 4 | exbii 1651 | . . . 4 ⊢ (∃𝑧 𝑧 = {𝑦 ∣ 𝑦 ⊆ 𝑥} ↔ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ⊆ 𝑥)) |
| 6 | 3, 5 | mpbir 146 | . . 3 ⊢ ∃𝑧 𝑧 = {𝑦 ∣ 𝑦 ⊆ 𝑥} |
| 7 | 6 | issetri 2809 | . 2 ⊢ {𝑦 ∣ 𝑦 ⊆ 𝑥} ∈ V |
| 8 | 1, 7 | eqeltri 2302 | 1 ⊢ 𝒫 𝑥 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1393 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {cab 2215 Vcvv 2799 ⊆ wss 3197 𝒫 cpw 3649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: pwexg 4263 pwnex 4539 exmidpw2en 7070 metuex 14513 istopon 14681 dmtopon 14691 tgdom 14740 |
| Copyright terms: Public domain | W3C validator |