![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vpwex | GIF version |
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4198 from vpwex 4197. (Revised by BJ, 10-Aug-2022.) |
Ref | Expression |
---|---|
vpwex | ⊢ 𝒫 𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw 3592 | . 2 ⊢ 𝒫 𝑥 = {𝑦 ∣ 𝑦 ⊆ 𝑥} | |
2 | axpow2 4194 | . . . . 5 ⊢ ∃𝑧∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑧) | |
3 | 2 | bm1.3ii 4139 | . . . 4 ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ⊆ 𝑥) |
4 | abeq2 2298 | . . . . 5 ⊢ (𝑧 = {𝑦 ∣ 𝑦 ⊆ 𝑥} ↔ ∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ⊆ 𝑥)) | |
5 | 4 | exbii 1616 | . . . 4 ⊢ (∃𝑧 𝑧 = {𝑦 ∣ 𝑦 ⊆ 𝑥} ↔ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ⊆ 𝑥)) |
6 | 3, 5 | mpbir 146 | . . 3 ⊢ ∃𝑧 𝑧 = {𝑦 ∣ 𝑦 ⊆ 𝑥} |
7 | 6 | issetri 2761 | . 2 ⊢ {𝑦 ∣ 𝑦 ⊆ 𝑥} ∈ V |
8 | 1, 7 | eqeltri 2262 | 1 ⊢ 𝒫 𝑥 ∈ V |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1503 ∈ wcel 2160 {cab 2175 Vcvv 2752 ⊆ wss 3144 𝒫 cpw 3590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-v 2754 df-in 3150 df-ss 3157 df-pw 3592 |
This theorem is referenced by: pwexg 4198 pwnex 4467 exmidpw2en 6940 istopon 13970 dmtopon 13980 tgdom 14029 |
Copyright terms: Public domain | W3C validator |