| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vpwex | GIF version | ||
| Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4224 from vpwex 4223. (Revised by BJ, 10-Aug-2022.) |
| Ref | Expression |
|---|---|
| vpwex | ⊢ 𝒫 𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pw 3618 | . 2 ⊢ 𝒫 𝑥 = {𝑦 ∣ 𝑦 ⊆ 𝑥} | |
| 2 | axpow2 4220 | . . . . 5 ⊢ ∃𝑧∀𝑦(𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝑧) | |
| 3 | 2 | bm1.3ii 4165 | . . . 4 ⊢ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ⊆ 𝑥) |
| 4 | abeq2 2314 | . . . . 5 ⊢ (𝑧 = {𝑦 ∣ 𝑦 ⊆ 𝑥} ↔ ∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ⊆ 𝑥)) | |
| 5 | 4 | exbii 1628 | . . . 4 ⊢ (∃𝑧 𝑧 = {𝑦 ∣ 𝑦 ⊆ 𝑥} ↔ ∃𝑧∀𝑦(𝑦 ∈ 𝑧 ↔ 𝑦 ⊆ 𝑥)) |
| 6 | 3, 5 | mpbir 146 | . . 3 ⊢ ∃𝑧 𝑧 = {𝑦 ∣ 𝑦 ⊆ 𝑥} |
| 7 | 6 | issetri 2781 | . 2 ⊢ {𝑦 ∣ 𝑦 ⊆ 𝑥} ∈ V |
| 8 | 1, 7 | eqeltri 2278 | 1 ⊢ 𝒫 𝑥 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1371 = wceq 1373 ∃wex 1515 ∈ wcel 2176 {cab 2191 Vcvv 2772 ⊆ wss 3166 𝒫 cpw 3616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 |
| This theorem is referenced by: pwexg 4224 pwnex 4496 exmidpw2en 7009 metuex 14317 istopon 14485 dmtopon 14495 tgdom 14544 |
| Copyright terms: Public domain | W3C validator |