ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vpwex GIF version

Theorem vpwex 4158
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4159 from vpwex 4158. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex 𝒫 𝑥 ∈ V

Proof of Theorem vpwex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 3561 . 2 𝒫 𝑥 = {𝑦𝑦𝑥}
2 axpow2 4155 . . . . 5 𝑧𝑦(𝑦𝑥𝑦𝑧)
32bm1.3ii 4103 . . . 4 𝑧𝑦(𝑦𝑧𝑦𝑥)
4 abeq2 2275 . . . . 5 (𝑧 = {𝑦𝑦𝑥} ↔ ∀𝑦(𝑦𝑧𝑦𝑥))
54exbii 1593 . . . 4 (∃𝑧 𝑧 = {𝑦𝑦𝑥} ↔ ∃𝑧𝑦(𝑦𝑧𝑦𝑥))
63, 5mpbir 145 . . 3 𝑧 𝑧 = {𝑦𝑦𝑥}
76issetri 2735 . 2 {𝑦𝑦𝑥} ∈ V
81, 7eqeltri 2239 1 𝒫 𝑥 ∈ V
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1341   = wceq 1343  wex 1480  wcel 2136  {cab 2151  Vcvv 2726  wss 3116  𝒫 cpw 3559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561
This theorem is referenced by:  pwexg  4159  pwnex  4427  istopon  12651  dmtopon  12661  tgdom  12712
  Copyright terms: Public domain W3C validator