ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vpwex GIF version

Theorem vpwex 4111
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4112 from vpwex 4111. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex 𝒫 𝑥 ∈ V

Proof of Theorem vpwex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 3517 . 2 𝒫 𝑥 = {𝑦𝑦𝑥}
2 axpow2 4108 . . . . 5 𝑧𝑦(𝑦𝑥𝑦𝑧)
32bm1.3ii 4057 . . . 4 𝑧𝑦(𝑦𝑧𝑦𝑥)
4 abeq2 2249 . . . . 5 (𝑧 = {𝑦𝑦𝑥} ↔ ∀𝑦(𝑦𝑧𝑦𝑥))
54exbii 1585 . . . 4 (∃𝑧 𝑧 = {𝑦𝑦𝑥} ↔ ∃𝑧𝑦(𝑦𝑧𝑦𝑥))
63, 5mpbir 145 . . 3 𝑧 𝑧 = {𝑦𝑦𝑥}
76issetri 2698 . 2 {𝑦𝑦𝑥} ∈ V
81, 7eqeltri 2213 1 𝒫 𝑥 ∈ V
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1330   = wceq 1332  wex 1469  wcel 1481  {cab 2126  Vcvv 2689  wss 3076  𝒫 cpw 3515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-11 1485  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106
This theorem depends on definitions:  df-bi 116  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-v 2691  df-in 3082  df-ss 3089  df-pw 3517
This theorem is referenced by:  pwexg  4112  pwnex  4378  istopon  12219  dmtopon  12229  tgdom  12280
  Copyright terms: Public domain W3C validator