ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vpwex GIF version

Theorem vpwex 4239
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4240 from vpwex 4239. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex 𝒫 𝑥 ∈ V

Proof of Theorem vpwex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 3628 . 2 𝒫 𝑥 = {𝑦𝑦𝑥}
2 axpow2 4236 . . . . 5 𝑧𝑦(𝑦𝑥𝑦𝑧)
32bm1.3ii 4181 . . . 4 𝑧𝑦(𝑦𝑧𝑦𝑥)
4 abeq2 2316 . . . . 5 (𝑧 = {𝑦𝑦𝑥} ↔ ∀𝑦(𝑦𝑧𝑦𝑥))
54exbii 1629 . . . 4 (∃𝑧 𝑧 = {𝑦𝑦𝑥} ↔ ∃𝑧𝑦(𝑦𝑧𝑦𝑥))
63, 5mpbir 146 . . 3 𝑧 𝑧 = {𝑦𝑦𝑥}
76issetri 2786 . 2 {𝑦𝑦𝑥} ∈ V
81, 7eqeltri 2280 1 𝒫 𝑥 ∈ V
Colors of variables: wff set class
Syntax hints:  wb 105  wal 1371   = wceq 1373  wex 1516  wcel 2178  {cab 2193  Vcvv 2776  wss 3174  𝒫 cpw 3626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-v 2778  df-in 3180  df-ss 3187  df-pw 3628
This theorem is referenced by:  pwexg  4240  pwnex  4514  exmidpw2en  7035  metuex  14432  istopon  14600  dmtopon  14610  tgdom  14659
  Copyright terms: Public domain W3C validator