ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vpwex GIF version

Theorem vpwex 4165
Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Oct-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) Revised to prove pwexg 4166 from vpwex 4165. (Revised by BJ, 10-Aug-2022.)
Assertion
Ref Expression
vpwex 𝒫 𝑥 ∈ V

Proof of Theorem vpwex
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pw 3568 . 2 𝒫 𝑥 = {𝑦𝑦𝑥}
2 axpow2 4162 . . . . 5 𝑧𝑦(𝑦𝑥𝑦𝑧)
32bm1.3ii 4110 . . . 4 𝑧𝑦(𝑦𝑧𝑦𝑥)
4 abeq2 2279 . . . . 5 (𝑧 = {𝑦𝑦𝑥} ↔ ∀𝑦(𝑦𝑧𝑦𝑥))
54exbii 1598 . . . 4 (∃𝑧 𝑧 = {𝑦𝑦𝑥} ↔ ∃𝑧𝑦(𝑦𝑧𝑦𝑥))
63, 5mpbir 145 . . 3 𝑧 𝑧 = {𝑦𝑦𝑥}
76issetri 2739 . 2 {𝑦𝑦𝑥} ∈ V
81, 7eqeltri 2243 1 𝒫 𝑥 ∈ V
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1346   = wceq 1348  wex 1485  wcel 2141  {cab 2156  Vcvv 2730  wss 3121  𝒫 cpw 3566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568
This theorem is referenced by:  pwexg  4166  pwnex  4434  istopon  12805  dmtopon  12815  tgdom  12866
  Copyright terms: Public domain W3C validator