![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > trel | GIF version |
Description: In a transitive class, the membership relation is transitive. (Contributed by NM, 19-Apr-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
trel | ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr2 3968 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) | |
2 | eleq12 2164 | . . . . . 6 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → (𝑦 ∈ 𝑥 ↔ 𝐵 ∈ 𝐶)) | |
3 | eleq1 2162 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
4 | 3 | adantl 273 | . . . . . 6 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
5 | 2, 4 | anbi12d 460 | . . . . 5 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ (𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴))) |
6 | eleq1 2162 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
7 | 6 | adantr 272 | . . . . 5 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → (𝑦 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) |
8 | 5, 7 | imbi12d 233 | . . . 4 ⊢ ((𝑦 = 𝐵 ∧ 𝑥 = 𝐶) → (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴))) |
9 | 8 | spc2gv 2731 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴))) |
10 | 9 | pm2.43b 52 | . 2 ⊢ (∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
11 | 1, 10 | sylbi 120 | 1 ⊢ (Tr 𝐴 → ((𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐵 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1297 = wceq 1299 ∈ wcel 1448 Tr wtr 3966 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-in 3027 df-ss 3034 df-uni 3684 df-tr 3967 |
This theorem is referenced by: trel3 3974 ordtr1 4248 suctr 4281 trsuc 4282 ordn2lp 4398 |
Copyright terms: Public domain | W3C validator |