| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preleq | GIF version | ||
| Description: Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.) |
| Ref | Expression |
|---|---|
| preleq.1 | ⊢ 𝐴 ∈ V |
| preleq.2 | ⊢ 𝐵 ∈ V |
| preleq.3 | ⊢ 𝐶 ∈ V |
| preleq.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| preleq | ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2lp 4610 | . . . . 5 ⊢ ¬ (𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷) | |
| 2 | eleq12 2271 | . . . . . 6 ⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → (𝐴 ∈ 𝐵 ↔ 𝐷 ∈ 𝐶)) | |
| 3 | 2 | anbi1d 465 | . . . . 5 ⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ↔ (𝐷 ∈ 𝐶 ∧ 𝐶 ∈ 𝐷))) |
| 4 | 1, 3 | mtbiri 677 | . . . 4 ⊢ ((𝐴 = 𝐷 ∧ 𝐵 = 𝐶) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷)) |
| 5 | 4 | con2i 628 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) → ¬ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) |
| 6 | 5 | adantr 276 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ¬ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)) |
| 7 | preleq.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 8 | preleq.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 9 | preleq.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
| 10 | preleq.4 | . . . . 5 ⊢ 𝐷 ∈ V | |
| 11 | 7, 8, 9, 10 | preq12b 3817 | . . . 4 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
| 12 | 11 | biimpi 120 | . . 3 ⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
| 13 | 12 | adantl 277 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) |
| 14 | 6, 13 | ecased 1362 | 1 ⊢ (((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 ∈ wcel 2177 Vcvv 2773 {cpr 3639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-dif 3172 df-un 3174 df-sn 3644 df-pr 3645 |
| This theorem is referenced by: opthreg 4612 |
| Copyright terms: Public domain | W3C validator |