ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preleq GIF version

Theorem preleq 4556
Description: Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.)
Hypotheses
Ref Expression
preleq.1 𝐴 ∈ V
preleq.2 𝐵 ∈ V
preleq.3 𝐶 ∈ V
preleq.4 𝐷 ∈ V
Assertion
Ref Expression
preleq (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem preleq
StepHypRef Expression
1 en2lp 4555 . . . . 5 ¬ (𝐷𝐶𝐶𝐷)
2 eleq12 2242 . . . . . 6 ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐴𝐵𝐷𝐶))
32anbi1d 465 . . . . 5 ((𝐴 = 𝐷𝐵 = 𝐶) → ((𝐴𝐵𝐶𝐷) ↔ (𝐷𝐶𝐶𝐷)))
41, 3mtbiri 675 . . . 4 ((𝐴 = 𝐷𝐵 = 𝐶) → ¬ (𝐴𝐵𝐶𝐷))
54con2i 627 . . 3 ((𝐴𝐵𝐶𝐷) → ¬ (𝐴 = 𝐷𝐵 = 𝐶))
65adantr 276 . 2 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ¬ (𝐴 = 𝐷𝐵 = 𝐶))
7 preleq.1 . . . . 5 𝐴 ∈ V
8 preleq.2 . . . . 5 𝐵 ∈ V
9 preleq.3 . . . . 5 𝐶 ∈ V
10 preleq.4 . . . . 5 𝐷 ∈ V
117, 8, 9, 10preq12b 3772 . . . 4 ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
1211biimpi 120 . . 3 ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
1312adantl 277 . 2 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
146, 13ecased 1349 1 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708   = wceq 1353  wcel 2148  Vcvv 2739  {cpr 3595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-dif 3133  df-un 3135  df-sn 3600  df-pr 3601
This theorem is referenced by:  opthreg  4557
  Copyright terms: Public domain W3C validator