ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preleq GIF version

Theorem preleq 4478
Description: Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.)
Hypotheses
Ref Expression
preleq.1 𝐴 ∈ V
preleq.2 𝐵 ∈ V
preleq.3 𝐶 ∈ V
preleq.4 𝐷 ∈ V
Assertion
Ref Expression
preleq (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem preleq
StepHypRef Expression
1 en2lp 4477 . . . . 5 ¬ (𝐷𝐶𝐶𝐷)
2 eleq12 2205 . . . . . 6 ((𝐴 = 𝐷𝐵 = 𝐶) → (𝐴𝐵𝐷𝐶))
32anbi1d 461 . . . . 5 ((𝐴 = 𝐷𝐵 = 𝐶) → ((𝐴𝐵𝐶𝐷) ↔ (𝐷𝐶𝐶𝐷)))
41, 3mtbiri 665 . . . 4 ((𝐴 = 𝐷𝐵 = 𝐶) → ¬ (𝐴𝐵𝐶𝐷))
54con2i 617 . . 3 ((𝐴𝐵𝐶𝐷) → ¬ (𝐴 = 𝐷𝐵 = 𝐶))
65adantr 274 . 2 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ¬ (𝐴 = 𝐷𝐵 = 𝐶))
7 preleq.1 . . . . 5 𝐴 ∈ V
8 preleq.2 . . . . 5 𝐵 ∈ V
9 preleq.3 . . . . 5 𝐶 ∈ V
10 preleq.4 . . . . 5 𝐷 ∈ V
117, 8, 9, 10preq12b 3705 . . . 4 ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
1211biimpi 119 . . 3 ({𝐴, 𝐵} = {𝐶, 𝐷} → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
1312adantl 275 . 2 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → ((𝐴 = 𝐶𝐵 = 𝐷) ∨ (𝐴 = 𝐷𝐵 = 𝐶)))
146, 13ecased 1328 1 (((𝐴𝐵𝐶𝐷) ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698   = wceq 1332  wcel 1481  Vcvv 2689  {cpr 3533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-v 2691  df-dif 3078  df-un 3080  df-sn 3538  df-pr 3539
This theorem is referenced by:  opthreg  4479
  Copyright terms: Public domain W3C validator