Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cldval GIF version

Theorem cldval 12298
 Description: The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
cldval.1 𝑋 = 𝐽
Assertion
Ref Expression
cldval (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
Distinct variable groups:   𝑥,𝐽   𝑥,𝑋

Proof of Theorem cldval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 cldval.1 . . . 4 𝑋 = 𝐽
21topopn 12205 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
3 pwexg 4108 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
4 rabexg 4075 . . 3 (𝒫 𝑋 ∈ V → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ∈ V)
52, 3, 43syl 17 . 2 (𝐽 ∈ Top → {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ∈ V)
6 unieq 3749 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
76, 1eqtr4di 2191 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
87pweqd 3516 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
97difeq1d 3194 . . . . 5 (𝑗 = 𝐽 → ( 𝑗𝑥) = (𝑋𝑥))
10 eleq12 2205 . . . . 5 ((( 𝑗𝑥) = (𝑋𝑥) ∧ 𝑗 = 𝐽) → (( 𝑗𝑥) ∈ 𝑗 ↔ (𝑋𝑥) ∈ 𝐽))
119, 10mpancom 419 . . . 4 (𝑗 = 𝐽 → (( 𝑗𝑥) ∈ 𝑗 ↔ (𝑋𝑥) ∈ 𝐽))
128, 11rabeqbidv 2682 . . 3 (𝑗 = 𝐽 → {𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥) ∈ 𝑗} = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
13 df-cld 12294 . . 3 Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥) ∈ 𝑗})
1412, 13fvmptg 5501 . 2 ((𝐽 ∈ Top ∧ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽} ∈ V) → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
155, 14mpdan 418 1 (𝐽 ∈ Top → (Clsd‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ 𝐽})
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104   = wceq 1332   ∈ wcel 1481  {crab 2421  Vcvv 2687   ∖ cdif 3069  𝒫 cpw 3511  ∪ cuni 3740  ‘cfv 5127  Topctop 12194  Clsdccld 12291 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2689  df-sbc 2911  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-br 3934  df-opab 3994  df-mpt 3995  df-id 4219  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-iota 5092  df-fun 5129  df-fv 5135  df-top 12195  df-cld 12294 This theorem is referenced by:  iscld  12302
 Copyright terms: Public domain W3C validator