ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rncoeq GIF version

Theorem rncoeq 4738
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoeq (dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)

Proof of Theorem rncoeq
StepHypRef Expression
1 dmcoeq 4737 . 2 (dom 𝐵 = ran 𝐴 → dom (𝐵𝐴) = dom 𝐴)
2 eqcom 2097 . . 3 (dom 𝐴 = ran 𝐵 ↔ ran 𝐵 = dom 𝐴)
3 df-rn 4478 . . . 4 ran 𝐵 = dom 𝐵
4 dfdm4 4659 . . . 4 dom 𝐴 = ran 𝐴
53, 4eqeq12i 2108 . . 3 (ran 𝐵 = dom 𝐴 ↔ dom 𝐵 = ran 𝐴)
62, 5bitri 183 . 2 (dom 𝐴 = ran 𝐵 ↔ dom 𝐵 = ran 𝐴)
7 df-rn 4478 . . . 4 ran (𝐴𝐵) = dom (𝐴𝐵)
8 cnvco 4652 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
98dmeqi 4668 . . . 4 dom (𝐴𝐵) = dom (𝐵𝐴)
107, 9eqtri 2115 . . 3 ran (𝐴𝐵) = dom (𝐵𝐴)
11 df-rn 4478 . . 3 ran 𝐴 = dom 𝐴
1210, 11eqeq12i 2108 . 2 (ran (𝐴𝐵) = ran 𝐴 ↔ dom (𝐵𝐴) = dom 𝐴)
131, 6, 123imtr4i 200 1 (dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1296  ccnv 4466  dom cdm 4467  ran crn 4468  ccom 4471
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-br 3868  df-opab 3922  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478
This theorem is referenced by:  dfdm2  4999  foco  5278
  Copyright terms: Public domain W3C validator