| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rncoeq | GIF version | ||
| Description: Range of a composition. (Contributed by NM, 19-Mar-1998.) |
| Ref | Expression |
|---|---|
| rncoeq | ⊢ (dom 𝐴 = ran 𝐵 → ran (𝐴 ∘ 𝐵) = ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmcoeq 4996 | . 2 ⊢ (dom ◡𝐵 = ran ◡𝐴 → dom (◡𝐵 ∘ ◡𝐴) = dom ◡𝐴) | |
| 2 | eqcom 2231 | . . 3 ⊢ (dom 𝐴 = ran 𝐵 ↔ ran 𝐵 = dom 𝐴) | |
| 3 | df-rn 4729 | . . . 4 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 4 | dfdm4 4914 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 5 | 3, 4 | eqeq12i 2243 | . . 3 ⊢ (ran 𝐵 = dom 𝐴 ↔ dom ◡𝐵 = ran ◡𝐴) |
| 6 | 2, 5 | bitri 184 | . 2 ⊢ (dom 𝐴 = ran 𝐵 ↔ dom ◡𝐵 = ran ◡𝐴) |
| 7 | df-rn 4729 | . . . 4 ⊢ ran (𝐴 ∘ 𝐵) = dom ◡(𝐴 ∘ 𝐵) | |
| 8 | cnvco 4906 | . . . . 5 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) | |
| 9 | 8 | dmeqi 4923 | . . . 4 ⊢ dom ◡(𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
| 10 | 7, 9 | eqtri 2250 | . . 3 ⊢ ran (𝐴 ∘ 𝐵) = dom (◡𝐵 ∘ ◡𝐴) |
| 11 | df-rn 4729 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 12 | 10, 11 | eqeq12i 2243 | . 2 ⊢ (ran (𝐴 ∘ 𝐵) = ran 𝐴 ↔ dom (◡𝐵 ∘ ◡𝐴) = dom ◡𝐴) |
| 13 | 1, 6, 12 | 3imtr4i 201 | 1 ⊢ (dom 𝐴 = ran 𝐵 → ran (𝐴 ∘ 𝐵) = ran 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ◡ccnv 4717 dom cdm 4718 ran crn 4719 ∘ ccom 4722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 |
| This theorem is referenced by: dfdm2 5262 foco 5558 |
| Copyright terms: Public domain | W3C validator |