ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rncoeq GIF version

Theorem rncoeq 4961
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoeq (dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)

Proof of Theorem rncoeq
StepHypRef Expression
1 dmcoeq 4960 . 2 (dom 𝐵 = ran 𝐴 → dom (𝐵𝐴) = dom 𝐴)
2 eqcom 2208 . . 3 (dom 𝐴 = ran 𝐵 ↔ ran 𝐵 = dom 𝐴)
3 df-rn 4694 . . . 4 ran 𝐵 = dom 𝐵
4 dfdm4 4879 . . . 4 dom 𝐴 = ran 𝐴
53, 4eqeq12i 2220 . . 3 (ran 𝐵 = dom 𝐴 ↔ dom 𝐵 = ran 𝐴)
62, 5bitri 184 . 2 (dom 𝐴 = ran 𝐵 ↔ dom 𝐵 = ran 𝐴)
7 df-rn 4694 . . . 4 ran (𝐴𝐵) = dom (𝐴𝐵)
8 cnvco 4871 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
98dmeqi 4888 . . . 4 dom (𝐴𝐵) = dom (𝐵𝐴)
107, 9eqtri 2227 . . 3 ran (𝐴𝐵) = dom (𝐵𝐴)
11 df-rn 4694 . . 3 ran 𝐴 = dom 𝐴
1210, 11eqeq12i 2220 . 2 (ran (𝐴𝐵) = ran 𝐴 ↔ dom (𝐵𝐴) = dom 𝐴)
131, 6, 123imtr4i 201 1 (dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  ccnv 4682  dom cdm 4683  ran crn 4684  ccom 4687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694
This theorem is referenced by:  dfdm2  5226  foco  5521
  Copyright terms: Public domain W3C validator