| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq12 | GIF version | ||
| Description: Equality relationship among 4 classes. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| eqeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | eqeq2 2206 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 = 𝐶 ↔ 𝐵 = 𝐷)) | |
| 3 | 1, 2 | sylan9bb 462 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqeq12i 2210 eqeq12d 2211 eqeqan12d 2212 funopg 5293 tfri3 6434 th3qlem1 6705 xpdom2 6899 difinfsnlem 7174 difinfsn 7175 xrlttri3 9889 bcn1 10867 summodc 11565 prodmodc 11760 ringinvnz1ne0 13681 |
| Copyright terms: Public domain | W3C validator |