Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeq12 | GIF version |
Description: Equality relationship among 4 classes. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
eqeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | eqeq2 2175 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 = 𝐶 ↔ 𝐵 = 𝐷)) | |
3 | 1, 2 | sylan9bb 458 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: eqeq12i 2179 eqeq12d 2180 eqeqan12d 2181 funopg 5222 tfri3 6335 th3qlem1 6603 xpdom2 6797 difinfsnlem 7064 difinfsn 7065 xrlttri3 9733 bcn1 10671 summodc 11324 prodmodc 11519 |
Copyright terms: Public domain | W3C validator |