Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeq12 GIF version

Theorem eqeq12 2152
 Description: Equality relationship among 4 classes. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
eqeq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem eqeq12
StepHypRef Expression
1 eqeq1 2146 . 2 (𝐴 = 𝐵 → (𝐴 = 𝐶𝐵 = 𝐶))
2 eqeq2 2149 . 2 (𝐶 = 𝐷 → (𝐵 = 𝐶𝐵 = 𝐷))
31, 2sylan9bb 457 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-gen 1425  ax-4 1487  ax-17 1506  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-cleq 2132 This theorem is referenced by:  eqeq12i  2153  eqeq12d  2154  eqeqan12d  2155  funopg  5157  tfri3  6264  th3qlem1  6531  xpdom2  6725  difinfsnlem  6984  difinfsn  6985  xrlttri3  9590  bcn1  10511  summodc  11159  prodmodc  11354
 Copyright terms: Public domain W3C validator