Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeq12d | GIF version |
Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
eqeq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
eqeq12d | ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq12d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqeq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | eqeq12 2178 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Copyright terms: Public domain | W3C validator |